5,009 research outputs found
Cherenkov and Scintillation Light Separation in Organic Liquid Scintillators
The CHErenkov / Scintillation Separation experiment (CHESS) has been used to
demonstrate the separation of Cherenkov and scintillation light in both linear
alkylbenzene (LAB) and LAB with 2g/L of PPO as a fluor (LAB/PPO). This is the
first such demonstration for the more challenging LAB/PPO cocktail and improves
on previous results for LAB. A time resolution of 338 +/- 12 ps FWHM results in
an efficiency for identifying Cherenkov photons in LAB/PPO of 70 +/- 3% and 63
+/- 8% for time- and charge-based separation, respectively, with scintillation
contamination of 36 +/- 5% and 38 +/- 4%. LAB/PPO data is consistent with a
rise time of 0.75 +/- 0.25 ns
What Ownership Society: Debating Housing and Social Security Reform in the United States
This article explores President George W. Bush's "ownership society" blueprint in comparative and historical perspective. By taking the "ownership society" seriously, it is possible to understand how it is deeply rooted in the American cultural repertoire, and how it offers a coherent neo-liberal discourse aimed at constructing the "need to reform" existing social policy legacies in the sense of a greater reliance on private savings and ownership. Although grounded in the American repertoire, President Bush's "ownership society" is inspired by a foreign model: Thatcher's "popular capitalism," another neo-liberal blueprint that featured a similar celebration of personal ownership. Discussing Thatcherism briefly before analyzing the debate over President Bush's "ownership society" in the fields of housing and pensions, this article underlines the relationship between ideational processes and institutional legacies in policy-making.housing, pensions, ideas, institutions, United States, Britain
Characterization of light production and transport in tellurium dioxide crystals
Simultaneous measurement of phonon and light signatures is an effective way to reduce the backgrounds and increase the sensitivity of CUPID, a next-generation bolometric neutrinoless double-beta decay (0νββ) experiment. Light emission in tellurium dioxide (TeO2) crystals, one of the candidate materials for CUPID, is dominated by faint Cherenkov radiation, and the high refractive index of TeO2 complicates light collection. Positive identification of 0νββ events therefore requires high-sensitivity light detectors and careful optimization of light transport. A detailed microphysical understanding of the optical properties of TeO2 crystals is essential for such optimization. We present a set of quantitative measurements of light production and transport in a cubic TeO2 crystal, verified with a complete optical model and calibrated against a UVT acrylic standard. We measure the optical surface properties of the crystal, and set stringent limits on the amount of room-temperature scintillation in TeO2 for β and ι particles of 5.3 and 8 photons/MeV, respectively, at 90% confidence. The techniques described here can be used to optimize and verify the particle identification capabilities of CUPID
Methodology for urban rail and construction technology research and development planning
A series of transit system visits, organized by the American Public Transit Association (APTA), was conducted in which the system operators identified the most pressing development needs. These varied by property and were reformulated into a series of potential projects. To assist in the evaluation, a data base useful for estimating the present capital and operating costs of various transit system elements was generated from published data. An evaluation model was developed which considered the rate of deployment of the research and development project, potential benefits, development time and cost. An outline of an evaluation methodology that considered benefits other than capital and operating cost savings was also presented. During the course of the study, five candidate projects were selected for detailed investigation; (1) air comfort systems; (2) solid state auxiliary power conditioners; (3) door systems; (4) escalators; and (5) fare collection systems. Application of the evaluation model to these five examples showed the usefulness of modeling deployment rates and indicated a need to increase the scope of the model to quantitatively consider reliability impacts
Experimental and computational characterization of a modified GEC cell for dusty plasma experiments
A self-consistent fluid model developed for simulations of micro- gravity
dusty plasma experiments has for the first time been used to model asymmetric
dusty plasma experiments in a modified GEC reference cell with gravity. The
numerical results are directly compared with experimental data and the
experimentally determined dependence of global discharge parameters on the
applied driving potential and neutral gas pressure is found to be well matched
by the model. The local profiles important for dust particle transport are
studied and compared with experimentally determined profiles. The radial forces
in the midplane are presented for the different discharge settings. The
differences between the results obtained in the modified GEC cell and the
results first reported for the original GEC reference cell are pointed out
- âŚ