3,659 research outputs found

    Electronic and total energy properties of ternary and quaternary semiconductor compounds, alloys, and superlattices: Theoretical study of Cu/graphite bonding

    Get PDF
    The goals of the research were to provide a fundamental science basis for why the bonding of Cu to graphite is weak, to critically evaluate the previous analysis of the wetting studies with particular regard to the values used for the surface energies of Cu and graphite, and to make recommendations for future experiments or other studies which could advance the understanding and solution of this technological problem. First principles electronic structure calculations were used to study the problem. These are based on density functional theory in the local density approximation and the use of the linear muffin-tin orbital band structure method. Calculations were performed for graphite monolayers, single crystal graphite with the hexagonal AB stacking, bulk Cu, Cu(111) surface, and Cu/graphite superlattices. The study is limited to the basal plane of graphite because this is the graphite plane exposed to Cu and graphite surface energies and combined with the measured contact angles to evaluate the experimental adhesion energy

    Band structure analysis of the conduction-band mass anisotropy in 6H and 4H SiC

    Full text link
    The band structures of 6H and 4H SiC calculated by means of the FP-LMTO method are used to determine the effective mass tensors for their conduction-band minima. The results are shown to be consistent with recent optically detected cyclotron resonance measurements and predict an unusual band filling dependence for 6H-SiC.Comment: 5 pages including 4 postscript figures incorporated with epsfig figs. available as part 2: sicfig.uu self-extracting file to appear in Phys. Rev. B: Aug. 15 (Rapid Communications

    Lattice polarization effects on the screened Coulomb interaction WW of the GW approximation

    Full text link
    In polar insulators where longitudinal and transverse optical phonon modes differ substantially, the electron-phonon coupling affects the energy-band structure primarily through the long-range Fr\"ohlich contribution to the Fan term. This diagram has the same structure as the GWGW self-energy where WW originates from the electron part of the screened coulomb interaction. The two can be conveniently combined by combining electron and lattice contributions to the polarizability. Both contributions are nonanalytic at the origin, and diverge as 1/q21/q^2 so that the predominant contribution comes from a small region around q=0q{=}0. Here we adopt a simple estimate for the Fr\"ohlich contribution by assuming that the entire phonon part can be attributed to a small volume of qq near q=0q{=}0. We estimate the magnitude for q→0\mathbf{q}{\rightarrow}0 from a generalized Lyddane-Sachs-Teller relation, and the radius from the inverse of the polaron length scale. The gap correction is shown to agree with Fr\"ohlich's simple estimate −αPωL/2-\alpha_P\omega_L/2 of the polaron effect

    The influence of certain environmental factors on the development of eggs and survival of miracidia of Echinostoma barbosai Lie and Basch, 1966

    Get PDF
    • …
    corecore