16 research outputs found
A universal setup for active control of a single-photon detector
The influence of bright light on a single-photon detector has been described
in a number of recent publications. The impact on quantum key distribution
(QKD) is important, and several hacking experiments have been tailored to fully
control single-photon detectors. Special attention has been given to avoid
introducing further errors into a QKD system. We describe the design and
technical details of an apparatus which allows to attack a
quantum-cryptographic connection. This device is capable of controlling
free-space and fiber-based systems and of minimizing unwanted clicks in the
system. With different control diagrams, we are able to achieve a different
level of control. The control was initially targeted to the systems using BB84
protocol, with polarization encoding and basis switching using beamsplitters,
but could be extended to other types of systems. We further outline how to
characterize the quality of active control of single-photon detectors.Comment: 10 pages, 10 figure
Global Time Distribution via Satellite-Based Sources of Entangled Photons
We propose a satellite-based scheme to perform clock synchronization between
ground stations spread across the globe using quantum resources. We refer to
this as a quantum clock synchronization (QCS) network. Through detailed
numerical simulations, we assess the feasibility and capabilities of a
near-term implementation of this scheme. We consider a small constellation of
nanosatellites equipped only with modest resources. These include quantum
devices such as spontaneous parametric down conversion (SPDC) sources,
avalanche photo-detectors (APDs), and moderately stable on-board clocks such as
chip scale atomic clocks (CSACs). In our simulations, the various performance
parameters describing the hardware have been chosen such that they are either
already commercially available, or require only moderate advances. We conclude
that with such a scheme establishing a global network of ground based clocks
synchronized to sub-nanosecond level (up to a few picoseconds) of precision,
would be feasible. Such QCS satellite constellations would form the
infrastructure for a future quantum network, able to serve as a globally
accessible entanglement resource. At the same time, our clock synchronization
protocol, provides the sub-nanosecond level synchronization required for many
quantum networking protocols, and thus, can be seen as adding an extra layer of
utility to quantum technologies in the space domain designed for other
purposes.Comment: 20 pages, 12 figures and 6 tables. Comments are welcom
Absolute emission rates of Spontaneous Parametric Down Conversion into single transverse Gaussian modes
We provide an estimate on the absolute values of the emission rate of photon
pairs produced by spontaneous parametric down conversion in a bulk crystal when
all interacting fields are in single transverse Gaussian modes. Both collinear
and non-collinear configurations are covered, and we arrive at a fully
analytical expression for the collinear case. Our results agree reasonably well
with values found in typical experiments, which allows this model to be used
for understanding the dependency on the relevant experimental parameters.Comment: RevTeX, 7 pages, 4 figures; this version has a short section
discussing ratios between pump and target waist
Experimental Polarization State Tomography using Optimal Polarimeters
We report on the experimental implementation of a polarimeter based on a
scheme known to be optimal for obtaining the polarization vector of ensembles
of spin-1/2 quantum systems, and the alignment procedure for this polarimeter
is discussed. We also show how to use this polarimeter to estimate the
polarization state for identically prepared ensembles of single photons and
photon pairs and extend the method to obtain the density matrix for generic
multi-photon states. State reconstruction and performance of the polarimeter is
illustrated by actual measurements on identically prepared ensembles of single
photons and polarization entangled photon pairs
Experimental noise-resistant Bell-inequality violations for polarization-entangled photons
We experimentally demonstrate that violations of Bell's inequalities for
two-photon polarization-entangled states with colored noise are extremely
robust, whereas this is not the case for states with white noise. Controlling
the amount of noise by using the timing compensation scheme introduced by Kim
et al. [Phys. Rev. A 67, 010301(R) (2003)], we have observed violations even
for states with very high noise, in excellent agrement with the predictions of
Cabello et al. [Phys. Rev. A 72, 052112 (2005)].Comment: REVTeX4, 5 pages, 4 figure
Comment on "Inherent security of phase coding quantum key distribution systems against detector blinding attacks" [Laser Phys. Lett. 15, 095203 (2018)]
This is a brief comment on the Letter by Balygin and his coworkers [Laser
Phys. Lett. 15, 095203 (2018)]. We point out an error that invalidates the
Letter's conclusions.Comment: 2 page