23 research outputs found

    Deconvolution of the relaxations associated with local and segmental motions in poly(methacrylate)s containing dichlorinated benzyl moieties in the ester residue

    Get PDF
    9 pages, 15 figures, 1 scheme.The relaxation behavior of poly(2,3-dichlorobenzyl methacrylate) is studied by broadband dielectric spectroscopy in the frequency range of 10–1–109 Hz and temperature interval of 303–423 K. The isotherms representing the dielectric loss of the glassy polymer in the frequency domain present a single absorption, called B process. At temperatures close to Tg, the dynamical (alfa) relaxation already overlaps with the (beta) process, the degree of overlapping increasing with temperature. The deconvolution of the (alfa) and (beta) relaxations is facilitated using the retardation spectra calculated from the isotherms utilizing linear programming regularization parameter techniques. The temperature dependence of the (beta) relaxation presents a crossover associated with a change in activation energy of the local processes. The distance between the (alfa) and (beta) peaks, expressed as log(fmax;/fmax;) where fmax is the frequency at the peak maximum, follows Arrhenius behavior in the temperature range of 310–384 K. Above 384 K, the distance between the peaks remains nearly constant and, as a result, the (alfa) onset temperature exhibited for many polymers is not reached in this system. The fraction of relaxation carried out through the (alfa) process, without (beta) assistance, is larger than 60% in the temperature range of 310–384 K where the so-called Williams ansatz holds.This work was financially suported by the DGCYT and CAM through Grant Nos. MAT2002-04042-C02 and GR/ MAT/0723/2004. Two of the authors (L.G. and D.R.) thank the FONDECYT for partial financial support through Grant Nos. 21050956 and 1050962, respectively.Peer reviewe

    Multifunctionalization of inert ceramic surfaces using in situ cap nucleation

    No full text

    Multifunctionalization of inert ceramics through graphene-derivates immobilization

    No full text

    Biomimetic cell-laden meha hydrogels for the regeneration of cartilage tissue

    No full text
    Methacrylated hyaluronic acid (MeHA) and chondroitin sulfate (CS)-biofunctionalized MeHA(CS-MeHA), were crosslinked in the presence of a matrix metalloproteinase 7 (MMP7)-sensitive peptide. The synthesized hydrogels were embedded with either human mesenchymal stem cells (hMSCs) or chondrocytes, at low concentrations, and subsequently cultured in a stem cell medium (SCM) or chondrogenic induction medium (CiM). The pivotal role of the synthesized hydrogels in promoting the expression of cartilage-related genes and the formation of neocartilage tissue despite the low concentration of encapsulated cells was assessed. It was found that hMSC-laden MeHA hydrogels cultured in an expansion medium exhibited a significant increase in the expression of chondrogenic markers compared to hMSCs cultured on a tissue culture polystyrene plate (TCPS). This favorable outcome was further enhanced for hMSC-laden CS-MeHA hydrogels, indicating the positive effect of the glycosaminoglycan binding peptide on the differentiation of hMSCs towards a chondrogenic phenotype. However, it was shown that an induction medium is necessary to achieve full span chondrogenesis. Finally, the histological analysis of chondrocyte-laden MeHA hydrogels cultured on an ex vivo osteochondral platform revealed the deposition of glycosaminoglycans (GAGs) and the arrangement of chondrocyte clusters in isogenous groups, which is characteristic of hyaline cartilage morphology

    Biomimetic Cell-Laden MeHA Hydrogels for the Regeneration of Cartilage Tissue

    Get PDF
    Methacrylated hyaluronic acid (MeHA) and chondroitin sulfate (CS)-biofunctionalized MeHA(CS-MeHA), were crosslinked in the presence of a matrix metalloproteinase 7 (MMP7)-sensitive peptide. The synthesized hydrogels were embedded with either human mesenchymal stem cells (hMSCs) or chondrocytes, at low concentrations, and subsequently cultured in a stem cell medium (SCM) or chondrogenic induction medium (CiM). The pivotal role of the synthesized hydrogels in promoting the expression of cartilage-related genes and the formation of neocartilage tissue despite the low concentration of encapsulated cells was assessed. It was found that hMSC-laden MeHA hydrogels cultured in an expansion medium exhibited a significant increase in the expression of chondrogenic markers compared to hMSCs cultured on a tissue culture polystyrene plate (TCPS). This favorable outcome was further enhanced for hMSC-laden CS-MeHA hydrogels, indicating the positive effect of the glycosaminoglycan binding peptide on the differentiation of hMSCs towards a chondrogenic phenotype. However, it was shown that an induction medium is necessary to achieve full span chondrogenesis. Finally, the histological analysis of chondrocyte-laden MeHA hydrogels cultured on an ex vivo osteochondral platform revealed the deposition of glycosaminoglycans (GAGs) and the arrangement of chondrocyte clusters in isogenous groups, which is characteristic of hyaline cartilage morphology

    Coatings Based on Organic/Non-Organic Composites on Bioinert Ceramics by Using Biomimetic Co-Precipitation

    No full text
    Bioinert ceramics have been commonly used in the field of orthopedic and dentistry due to their excellent mechanical properties, esthetic look, good biocompatibility and chemical inertness. However, an activation of its bioinert surface could bring additional advantages for better implant-integration in vivo. Therefore, we introduce an innovative biomimetic co-precipitation technique by using modified simulated body fluid (SBF) to obtain a composite coating made of organic/non-organic components. The zirconia samples were soaked in SBF containing different concentrations of protein (0.01, 0.1, 1, 10 and 100 g/l). Bovine serum albumin (BSA) was applied as a standard protein. During the soaking time, a precipitation of calcium phosphate took place on the substrate surfaces. The proteins were incorporated into the coating during precipitation. Morphology changes of precipitated hydroxyapatite (HAp) due to the presence of proteins were observed on SEM-images. The presence of proteins within the coating was proven by using SEM/energy dispersive X-ray spectroscopy (EDX) and immunohistochemical analysis. We conclude that it is possible to co-precipitate the organic/non-organic composite on inert ceramic by using the wet-chemistry method. In future studies, BSA could be replaced by targeted proteins appropriate to the application area. This method could create new biomaterials, the surfaces of which could be tailored according to the desires and requirements of their use
    corecore