330 research outputs found
Succession of the sea-surface microlayer in the coastal Baltic Sea under natural and experimentally induced low-wind conditions
The sea-surface microlayer (SML) is located within the boundary between the atmosphere and hydrosphere. The high spatial and temporal variability of the SML's properties, however, have hindered a clear understanding of interactions between biotic and abiotic parameters at or across the air-water interface. Among the factors changing the physical and chemical environment of the SML, wind speed is an important one. In order to examine the temporal effects of minimized wind influence, SML samples were obtained from the coastal zone of the southern Baltic Sea and from mesocosm experiments in a marina to study naturally and artificially calmed sea surfaces. Organic matter concentrations as well as abundance, (3)H-thymidine incorporation, and the community composition of bacteria in the SML (bacterioneuston) compared to the underlying bulk water (ULW) were analyzed. In all SML samples, dissolved organic carbon and nitrogen were only slightly enriched and showed low temporal variability, whereas particulate organic carbon and nitrogen were generally greatly enriched and highly variable. This was especially pronounced in a dense surface film (slick) that developed during calm weather conditions as well as in the artificially calmed mesocosms. Overall, bacterioneuston abundance and productivity correlated with changing concentrations of particulate organic matter. Moreover, changes in the community composition in the field study were stronger in the particle-attached than in the non-attached bacterioneuston. This implies that decreasing wind enhances the importance of particle-attached assemblages and finally induces a succession of the bacterial community in the SML. Eventually, under very calm meteorological conditions, there is an uncoupling of the bacterioneuston from the ULW
Quenched Chiral Perturbation Theory for Vector Mesons
We develop quenched chiral perturbation theory for vector mesons made of
light quarks, in the limit where the vector meson masses are much larger than
the pion mass. We use this theory to extract the leading nonanalytic dependence
of the vector meson masses on the masses of the light quarks. By comparing with
analogous quantities computed in ordinary chiral perturbation theory, we
estimate the size of quenching effects, observing that in general they can be
quite large. This estimate is relevant to lattice simulations, where the
mass is often used to set the lattice spacing.Comment: 18 pages, 8 figures, uses REVTeX and epsf.st
Light Hadron Spectrum in Quenched Lattice QCD with Staggered Quarks
Without chiral extrapolation, we achieved a realistic nucleon to (\rho)-meson
mass ratio of (m_N/m_\rho = 1.23 \pm 0.04 ({\rm statistical}) \pm 0.02 ({\rm
systematic})) in our quenched lattice QCD numerical calculation with staggered
quarks. The systematic error is mostly from finite-volume effect and the
finite-spacing effect is negligible. The flavor symmetry breaking in the pion
and (\rho) meson is no longer visible. The lattice cutoff is set at 3.63 (\pm)
0.06 GeV, the spatial lattice volume is (2.59 (\pm) 0.05 fm)(^3), and bare
quarks mass as low as 4.5 MeV are used. Possible quenched chiral effects in
hadron mass are discussed.Comment: 5 pages and 5 figures, use revtex
Hadron masses and decay constants in quenched QCD
We present results for the mass spectrum and decay constants using
non-perturbatively O(a) improved Wilson fermions. Three values of and
30 different quark masses are used to obtain the chiral and continuum limits.
Special emphasis will be given to the question of taking the chiral limit and
the existence of non-analytic behavior predicted by quenched chiral
perturbation theory.Comment: LATTICE99(spectrum), 3 pages, 6 figure
Structure functions near the chiral limit
We compute hadron masses and the lowest moments of unpolarized and polarized
nucleon structure functions down to pion masses of 300 MeV, in an effort to
make unambiguous predictions at the physical light quark mass.Comment: 3 pages, 3 figures, Lattice2002(matrixel
Excited nucleon spectrum using a non-perturbatively improved clover fermion action
We discuss the extraction of negative-parity baryon masses from lattice QCD
calculations. The mass of the lowest-lying negative-parity state
is computed in quenched lattice QCD using an -improved clover
fermion action, and a splitting found with the nucleon mass. The calculation is
performed on two lattice volumes, and three lattice spacings enabling a study
of both finite-volume and finite-lattice-spacing uncertainties. A measurement
of the first excited radial excitation of the nucleon finds a mass considerably
larger than that of the negative-parity ground state, in accord with other
lattice determinations but in disagreement with experiment. Results are also
presented for the lightest negative-parity state.Comment: 7 pages, 5 figures, uses espcrc2. Talk presented at Workshop on
Lattice Hadron Physics, Colonial Club Resort, Cairns, Australia, July 9-18,
2001. Corrected error in determination of mass of excited, positive-parity
nucleon resonanc
The Light Hadron Mass Spectrum with Non-Perturbatively O(a) Improved Wilson Fermions
We compute the light hadron mass spectrum in quenched lattice QCD at using the Sheikholeslami-Wohlert fermionic action. The calculation is done
for several choices of the coefficient , including and the
recently proposed optimal value . We find that the individual
masses change by up to 30\% under improvement. The spectrum calculation
suggests for the optimal value of the coefficient.Comment: 15 pages, uuencoded Z-compressed postscript file. Also available from
http://www.desy.de/pub/preprints/desy/199
Quenched Light Hadron Spectrum with the Wilson Quark Action: Final Results from CP-PACS
We report the final results of the CP-PACS calculation for the quenched light
hadron spectrum with the Wilson quark action. Our data support the presence of
quenched chiral singularities, and this motivates us to use mass formulae based
on quenched chiral perturbation theory in order to extrapolate hadron masses to
the physical point. Hadron masses and decay constants in the continuum limit
show unambiguous systematic deviations from experiment. We also report the
results for light quark masses.Comment: LATTICE98(spectrum). The poster at Lattice98 can be obtained from
http://www.rccp.tsukuba.ac.jp/people/yoshie/Lat98.Poster
Quenched hadron spectroscopy with improved staggered quark action
We investigate light hadron spectroscopy with an improved quenched staggered
quark action. We compare the results obtained with an improved gauge plus an
improved quark action, an improved gauge plus standard quark action, and the
standard gauge plus standard quark action. Most of the improvement in the
spectroscopy results is due to the improved gauge sector. However, the improved
quark action substantially reduces violations of Lorentz invariance, as
evidenced by the meson dispersion relations.Comment: New references adde
- …
