13 research outputs found
Multimedia performance evaluation of ethernet and token ring media access protocols: a network comparison
This paper and accompanying project examines which type of time-division multiplexing media access protocol, the Carrier Sense Multiple Access (CSMA) of Ethernet or the token passing of token ring, is best able to fulfill the stringent isochronous performance demands required of today's resource-hungry multimedia networks, specifically the requirements of high throughput, low latency and jitter, and minimal error rates. Using performance bounds accepted by other researchers as sufficient to ensure quality isochronous transmission, that of (1) the throughput rate being equal to or less than the playback rate; (2) the latency in transmitting each packet ranging from 20 to 400 milliseconds and the variance or jitter being less than 80 milliseconds; and (3) the rate of lost packets ranging from 0.01--1.001, this paper approaches a solution first from the theoretical and then integrates into the final conclusion an analytical, C++ software evaluation test component that models network performance under optimum conditions. The immediate benefit of the entire study is the identification of one media access protocol, Ethernet or Token Ring, over its counterpart as being superior for isochronous applications as defined by the above performance requirements, and the long-term consequence of this identification will be facilitating for future network designers, including those of digital libraries, the selection of the best network architecture for their multimedia environments
Evidence synthesis as the basis for decision analysis: a method of selecting the best agricultural practices for multiple ecosystem services
Agricultural management practices have impacts not only on crops and livestock, but also on soil, water, wildlife, and ecosystem services. Agricultural research provides evidence about these impacts, but it is unclear how this evidence should be used to make decisions. Two methods are widely used in decision making: evidence synthesis and decision analysis. However, a system of evidence-based decision making that integrates these two methods has not yet been established. Moreover, the standard methods of evidence synthesis have a narrow focus (e.g., the effects of one management practice), but the standard methods of decision analysis have a wide focus (e.g., the comparative effectiveness of multiple management practices). Thus, there is a mismatch between the outputs from evidence synthesis and the inputs that are needed for decision analysis. We show how evidence for a wide range of agricultural practices can be reviewed and summarized simultaneously (âsubject-wide evidence synthesisâ), and how this evidence can be assessed by experts and used for decision making (âmultiple-criteria decision analysisâ). We show how these methods could be used by The Nature Conservancy (TNC) in California to select the best management practices for multiple ecosystem services in Mediterranean-type farmland and rangeland, based on a subject-wide evidence synthesis that was published by Conservation Evidence (www.conservationevidence.com). This method of âevidence-based decision analysisâ could be used at different scales, from the local scale (farmers deciding which practices to adopt) to the national or international scale (policy makers deciding which practices to support through agricultural subsidies or other payments for ecosystem services). We discuss the strengths and weaknesses of this method, and we suggest some general principles for improving evidence synthesis as the basis for multi-criteria decision analysis
Advancing specificity in delirium: The delirium subtyping initiative
BACKGROUND: Delirium, a common syndrome with heterogeneous etiologies and clinical presentations, is associated with poor long-term outcomes. Recording and analyzing all delirium equally could be hindering the field's understanding of pathophysiology and identification of targeted treatments. Current delirium subtyping methods reflect clinically evident features but likely do not account for underlying biology. METHODS: The Delirium Subtyping Initiative (DSI) held three sessions with an international panel of 25 experts. RESULTS: Meeting participants suggest further characterization of delirium features to complement the existing Diagnostic and Statistical Manual of Mental Disorders Fifth Edition Text Revision diagnostic criteria. These should span the range of delirium-spectrum syndromes and be measured consistently across studies. Clinical features should be recorded in conjunction with biospecimen collection, where feasible, in a standardized way, to determine temporal associations of biology coincident with clinical fluctuations. DISCUSSION: The DSI made recommendations spanning the breadth of delirium research including clinical features, study planning, data collection, and data analysis for characterization of candidate delirium subtypes. HIGHLIGHTS: Delirium features must be clearly defined, standardized, and operationalized. Large datasets incorporating both clinical and biomarker variables should be analyzed together. Delirium screening should incorporate communication and reasoning
Advancing specificity in delirium: The delirium subtyping initiative
BACKGROUND: Delirium, a common syndrome with heterogeneous etiologies and clinical presentations, is associated with poor long-term outcomes. Recording and analyzing all delirium equally could be hindering the field's understanding of pathophysiology and identification of targeted treatments. Current delirium subtyping methods reflect clinically evident features but likely do not account for underlying biology. METHODS: The Delirium Subtyping Initiative (DSI) held three sessions with an international panel of 25 experts. RESULTS: Meeting participants suggest further characterization of delirium features to complement the existing Diagnostic and Statistical Manual of Mental Disorders Fifth Edition Text Revision diagnostic criteria. These should span the range of delirium-spectrum syndromes and be measured consistently across studies. Clinical features should be recorded in conjunction with biospecimen collection, where feasible, in a standardized way, to determine temporal associations of biology coincident with clinical fluctuations. DISCUSSION: The DSI made recommendations spanning the breadth of delirium research including clinical features, study planning, data collection, and data analysis for characterization of candidate delirium subtypes. HIGHLIGHTS: Delirium features must be clearly defined, standardized, and operationalized. Large datasets incorporating both clinical and biomarker variables should be analyzed together. Delirium screening should incorporate communication and reasoning
Recommended from our members
Linking soil microbial community structure to potential carbon mineralization: A continental scale assessment of reduced tillage
Potential carbon mineralization (Cmin) is a commonly used indicator of soil health, with greater Cmin values interpreted as healthier soil. While Cmin values are typically greater in agricultural soils managed with minimal physical disturbance, the mechanisms driving the increases remain poorly understood. This study assessed bacterial and archaeal community structure and potential microbial drivers of Cmin in soils maintained under various degrees of physical disturbance. Potential carbon mineralization, 16S rRNA sequences, and soil characterization data were collected as part of the North American Project to Evaluate Soil Health Measurements (NAPESHM). Results showed that type of cropping system, intensity of physical disturbance, and soil pH influenced microbial sensitivity to physical disturbance. Furthermore, 28% of amplicon sequence variants (ASVs), which were important in modeling Cmin, were enriched under soils managed with minimal physical disturbance. Sequences identified as enriched under minimal disturbance and important for modeling Cmin, were linked to organisms which could produce extracellular polymeric substances and contained metabolic strategies suited for tolerating environmental stressors. Understanding how physical disturbance shapes microbial communities across climates and inherent soil properties and drives changes in Cmin provides the context necessary to evaluate management impacts on standardized measures of soil microbial activity
Carbon-sensitive pedotransfer functions for plant available water
Currently accepted pedotransfer functions show negligible effect of management-induced changes to soil organic carbon (SOC) on plant available water holding capacity (ΞAWHC), while some studies show the ability to substantially increase ΞAWHC through management. The Soil Health Institute\u27s North America Project to Evaluate Soil Health Measurements measured water content at field capacity using intact soil cores across 124 long-term research sites that contained increases in SOC as a result of management treatments such as reduced tillage and cover cropping. Pedotransfer functions were created for volumetric water content at field capacity (ΞFC) and permanent wilting point (ΞPWP). New pedotransfer functions had predictions of ΞAWHC that were similarly accurate compared with Saxton and Rawls when tested on samples from the National Soil Characterization database. Further, the new pedotransfer functions showed substantial effects of soil calcareousness and SOC on ΞAWHC. For an increase in SOC of 10 g kgâ1 (1%) in noncalcareous soils, an average increase in ΞAWHC of 3.0 mm 100 mmâ1 soil (0.03 m3 mâ3) on average across all soil texture classes was found. This SOC related increase in ΞAWHC is about double previous estimates. Calcareous soils had an increase in ΞAWHC of 1.2 mm 100 mmâ1 soil associated with a 10 g kgâ1 increase in SOC, across all soil texture classes. New equations can aid in quantifying benefits of soil management practices that increase SOC and can be used to model the effect of changes in management on drought resilience
Novel Technological and Management Options for Accelerating Transformational Changes in Rice and Livestock Systems
Agricultural producers grapple with low farm yields and declining ecosystem services within their landscapes. In several instances, agricultural production systems may be considered largely unsustainable in socioeconomic and ecological (resource conservation and use and impact on nature) terms. Novel technological and management options that can serve as vehicles to promote the provision of multiple benefits, including the improvement of smallholder livelihoods, are needed. We call for a paradigm shift to allow designing and implementing agricultural systems that are not only efficient (serving as a means to promote development based on the concept of creating more goods and services while using fewer resources and creating less waste) but can also be considered synergistic (symbiotic relationship between socio-ecological systems) by simultaneously contributing to major objectives of economic, ecological, and social (equity) improvement of agro-ecosystems. These transformations require strategic approaches that are supported by participatory system-level research, experimentation, and innovation. Using data from several studies, we here provide evidence for technological and management options that could be optimized, promoted, and adopted to enable agricultural systems to be efficient, effective, and, indeed, sustainable. Specifically, we present results from a study conducted in Colombia, which demonstrated that, in rice systems, improved water management practices such as Alternate Wetting and Drying (AWD) reduce methane emissions (~70%). We also show how women can play a key role in AWD adoption. For livestock systems, we present in vitro evidence showing that the use of alternative feed options such as cassava leaves contributes to livestock feed supplementation and could represent a cost-effective approach for reducing enteric methane emissions (22% to 55%). We argue that to design and benefit from sustainable agricultural systems, there is a need for better targeting of interventions that are co-designed, co-evaluated, and co-promoted, with farmers as allies of transformational change (as done in the climate-smart villages), not as recipients of external knowledge. Moreover, for inclusive sustainability that harnesses existing knowledge and influences decision-making processes across scales, there is a need for constant, efficient, effective, and real trans-disciplinary communication and collaboration
Recommended from our members
Linking soil microbial community structure to potential carbon mineralization: A continental scale assessment of reduced tillage
Potential carbon mineralization (Cmin) is a commonly used indicator of soil health, with greater Cmin values interpreted as healthier soil. While Cmin values are typically greater in agricultural soils managed with minimal physical disturbance, the mechanisms driving the increases remain poorly understood. This study assessed bacterial and archaeal community structure and potential microbial drivers of Cmin in soils maintained under various degrees of physical disturbance. Potential carbon mineralization, 16S rRNA sequences, and soil characterization data were collected as part of the North American Project to Evaluate Soil Health Measurements (NAPESHM). Results showed that type of cropping system, intensity of physical disturbance, and soil pH influenced microbial sensitivity to physical disturbance. Furthermore, 28% of amplicon sequence variants (ASVs), which were important in modeling Cmin, were enriched under soils managed with minimal physical disturbance. Sequences identified as enriched under minimal disturbance and important for modeling Cmin, were linked to organisms which could produce extracellular polymeric substances and contained metabolic strategies suited for tolerating environmental stressors. Understanding how physical disturbance shapes microbial communities across climates and inherent soil properties and drives changes in Cmin provides the context necessary to evaluate management impacts on standardized measures of soil microbial activity.Foundation for Food and Agriculture ResearchOpen access articleThis item from the UA Faculty Publications collection is made available by the University of Arizona with support from the University of Arizona Libraries. If you have questions, please contact us at [email protected]