95 research outputs found

    The Impact of Venous Thromboembolism on Risk of Death or Hemorrhage in Older Cancer Patients

    Get PDF
    BACKGROUND: Among older cancer patients, there is uncertainty about the degree to which venous thromboembolism (VTE) and its treatment increase the risk of death or major hemorrhage. OBJECTIVE: To determine the prevalence of VTE in a cohort of older cancer patients, as well as the degree to which VTE increased the risk of death or major hemorrhage. METHODS: We conducted a retrospective cohort study of linked Surveillance, Epidemiology, and End Results cancer registry and Medicare administrative claims data. Patients with any of ten invasive cancers diagnosed during 1995 through 1999 were included; the independent variable was VTE diagnosed concomitantly with cancer diagnosis. Outcomes included major hemorrhage during the first year after cancer diagnosis and all-cause mortality; RESULTS: Overall, about 1% of patients who were diagnosed with cancer also had a VTE diagnosed concomitantly. After adjusting for sociodemographic factors and cancer stage and grade, concomitant VTE was associated with a relative increase in the risk of death for 8 of the 10 cancer types; the increase in risk tended to range 20–40% across most cancer types. Approximately 16.8% (95% confidence interval [CI] 14.9–18.8%) of patients with a concomitant VTE and 7.9% (95% CI 7.7–8.0%) of patients without a VTE experienced a major hemorrhage during the year after cancer diagnosis (P value <.001). The excess risk of hemorrhage associated with VTE varied substantially across cancer types, ranging from no significant excess (kidney and uterine cancer) to 11.5% (lymphoma). CONCLUSION: Concomitant VTE is not only a marker and potential mediator of increased risk of death among older cancer patients, but patients with a VTE have a marked increased risk of major hemorrhage

    Phytolith Analysis for Differentiating between Foxtail Millet (Setaria italica) and Green Foxtail (Setaria viridis)

    Get PDF
    Foxtail millet (Setaria italica) is one of the oldest domesticated cereal crops in Eurasia, but identifying foxtail millets, especially in charred grains, and differentiating it from its wild ancestor, green foxtail (Setaria viridis), in the archaeobotanical remains, is still problematic. Phytolithic analysis provides a meaningful method for identifying this important crop. In this paper, the silicon structure patterns in the glumes, lemmas, and paleas from inflorescence bracts in 16 modern plants of foxtail millet and green foxtail from China and Europe are examined using light microscopy with phase-contrast and a microscopic interferometer. Our research shows that the silicon structure of ΩIII from upper lemmas and paleas in foxtail millet and green foxtail can be correspondingly divided into two groups. The size of ΩIII type phytolith of foxtail millet is bigger than that from green foxtail. Discriminant function analysis reveals that 78.4% of data on foxtail millet and 76.9% of data on green foxtail are correctly classified. This means certain morphotypes of phytoliths are relatively reliable tools for distinguishing foxtail millet from green foxtail. Our results also revealed that the husk phytolith morphologies of foxtail millets from China and Eastern Europe are markedly different from those from Western Europe. Our research gives a meaningful method of separating foxtail millet and green foxtail. The implications of these findings for understanding the history of foxtail millet domestication and cultivation in ancient civilizations are significant

    ProsCan for Couples: Randomised controlled trial of a couples-based sexuality intervention for men with localised prostate cancer who receive radical prostatectomy

    Get PDF
    Background: Prostate cancer is the most common male cancer in the Western world. The most substantial long term morbidity from this cancer is sexual dysfunction with consequent adverse changes in couple and intimate relationships. Research to date has not identified an effective way to improve sexual and psychosocial adjustment for both men with prostate cancer and their partners. As well, the efficacy and cost effectiveness of peer counselling as opposed to professional models of service delivery has not yet been empirically tested. This paper presents the design of a three arm randomised controlled trial (peer vs. nurse counselling vs. usual care) that will evaluate the efficacy of two couples-based sexuality interventions (ProsCan for Couples: Peer support vs. nurse counselling) on men's and women's sexual and psychosocial adjustment after surgical treatment for localised prostate cancer; in addition to cost-effectiveness. Methods/design: Seventy couples per condition (210 couples in total) will be recruited after diagnosis and before treatment through urology private practices and hospital outpatient clinics and randomised to (1) usual care; (2) eight sessions of peer-delivered telephone support with DVD education; and (3) eight sessions of oncology nurse-delivered telephone counselling with DVD education. Two intervention sessions will be delivered before surgery and six over the six months post-surgery. The intervention will utilise a cognitive behavioural approach along with couple relationship education focussed on relationship enhancement and helping the couple to conjointly manage the stresses of cancer diagnosis and treatment. Participants will be assessed at baseline (before surgery) and 3, 6 and 12 months post-surgery. Outcome measures include: Sexual adjustment; unmet sexuality supportive care needs; attitudes to sexual help seeking; psychological adjustment; benefit finding and quality of life. Discussion: The study will provide recommendations about the efficacy of peer support vs. nurse counselling to facilitate better sexual and couple adjustment after prostate cancer as well as recommendations on whether the interventions represent efficient health service delivery

    Coding SNPs analysis highlights genetic relationships and evolution pattern in eggplant complexes

    Get PDF
    [EN] Brinjal (Solanum melongena), scarlet (S. aethiopicum) and gboma (S. macrocarpon) eggplants are three Old World domesticates. The genomic DNA of a collection of accessions belonging to the three cultivated species, along with a representation of various wild relatives, was characterized for the presence of single nucleotide polymorphisms (SNPs) using a genotype-by-sequencing approach. A total of 210 million useful reads were produced and were successfully aligned to the reference eggplant genome sequence. Out of the 75,399 polymorphic sites identified among the 76 entries in study, 12,859 were associated with coding sequence. A genetic relationships analysis, supported by the output of the FastSTRUCTURE software, identified four major sub-groups as present in the germplasm panel. The first of these clustered S. aethiopicum with its wild ancestor S. anguivi; the second, S. melongena, its wild progenitor S. insanum, and its relatives S. incanum, S. lichtensteinii and S. linneanum; the third, S. macrocarpon and its wild ancestor S. dasyphyllum; and the fourth, the New World species S. sisymbriifolium, S. torvum and S. elaeagnifolium. By applying a hierarchical FastSTRUCTURE analysis on partitioned data, it was also possible to resolve the ambiguous membership of the accessions of S. campylacanthum, S. violaceum, S. lidii, S. vespertilio and S. tomentsum, as well as to genetically differentiate the three species of New World Origin. A principal coordinates analysis performed both on the entire germplasm panel and also separately on the entries belonging to sub-groups revealed a clear separation among species, although not between each of the domesticates and their respective wild ancestors. There was no clear differentiation between either distinct cultivar groups or different geographical provenance. Adopting various approaches to analyze SNP variation provided support for interpretation of results. The genotyping-by-sequencing approach showed to be highly efficient for both quantifying genetic diversity and establishing genetic relationships among and within cultivated eggplants and their wild relatives. The relevance of these results to the evolution of eggplants, as well as to their genetic improvement, is discussed.This work has been funded in part by European Unions Horizon 2020 Research and Innovation Programme under grant agreement No 677379 (G2P-SOL project: Linking genetic resources, genomes and phenotypes of Solanaceous crops) and by Spanish Ministerio de Economia, Industria y Competitividad and Fondo Europeo de Desarrollo Regional (grant AGL2015-64755-R from MINECO/FEDER). Funding has also been received from the initiative "Adapting Agriculture to Climate Change: Collecting, Protecting and Preparing Crop Wild Relatives", which is supported by the Government of Norway. This last project is managed by the Global Crop Diversity Trust with the Millennium Seed Bank of the Royal Botanic Gardens, Kew and implemented in partnership with national and international gene banks and plant breeding institutes around the world. For further information see the project website:http://www.cwrdiversity.org/. Pietro Gramazio is grateful to Universitat Politecnica de Valencia for a pre-doctoral (Programa FPI de la UPV-Subprograma 1/2013 call) contract. Mariola Plazas is grateful to Spanish Ministerio de Economia, Industria y Competitividad for a post-doctoral grant within the Santiago Grisolia Programme (FCJI-2015-24835). The funders had no role in study design, data collection and analysis, decision to publish, or preparation of the manuscript.Acquadro, A.; Barchi, L.; Gramazio, P.; Portis, E.; Vilanova Navarro, S.; Comino, C.; Plazas Ávila, MDLO.... (2017). Coding SNPs analysis highlights genetic relationships and evolution pattern in eggplant complexes. PLoS ONE. 12(7). https://doi.org/10.1371/journal.pone.0180774Se018077412

    Universal Plant DNA Barcode Loci May Not Work in Complex Groups: A Case Study with Indian Berberis Species

    Get PDF
    BACKGROUND: The concept of DNA barcoding for species identification has gained considerable momentum in animals because of fairly successful species identification using cytochrome oxidase I (COI). In plants, matK and rbcL have been proposed as standard barcodes. However, barcoding in complex genera is a challenging task. METHODOLOGY AND PRINCIPAL FINDINGS: We investigated the species discriminatory power of four reportedly most promising plant DNA barcoding loci (one from nuclear genome--ITS, and three from plastid genome--trnH-psbA, rbcL and matK) in species of Indian Berberis L. (Berberidaceae) and two other genera, Ficus L. (Moraceae) and Gossypium L. (Malvaceae). Berberis species were delineated using morphological characters. These characters resulted in a well resolved species tree. Applying both nucleotide distance and nucleotide character-based approaches, we found that none of the loci, either singly or in combinations, could discriminate the species of Berberis. ITS resolved all the tested species of Ficus and Gossypium and trnH-psbA resolved 82% of the tested species in Ficus. The highly regarded matK and rbcL could not resolve all the species. Finally, we employed amplified fragment length polymorphism test in species of Berberis to determine their relationships. Using ten primer pair combinations in AFLP, the data demonstrated incomplete species resolution. Further, AFLP analysis showed that there was a tendency of the Berberis accessions to cluster according to their geographic origin rather than species affiliation. CONCLUSIONS/SIGNIFICANCE: We reconfirm the earlier reports that the concept of universal barcode in plants may not work in a number of genera. Our results also suggest that the matK and rbcL, recommended as universal barcode loci for plants, may not work in all the genera of land plants. Morphological, geographical and molecular data analyses of Indian species of Berberis suggest probable reticulate evolution and thus barcode markers may not work in this case

    Combinatorial hydrogel library enables identification of materials that mitigate the foreign body response in primates

    Get PDF
    The foreign body response is an immune-mediated reaction that can lead to the failure of implanted medical devices and discomfort for the recipient. There is a critical need for biomaterials that overcome this key challenge in the development of medical devices. Here we use a combinatorial approach for covalent chemical modification to generate a large library of variants of one of the most widely used hydrogel biomaterials, alginate. We evaluated the materials in vivo and identified three triazole-containing analogs that substantially reduce foreign body reactions in both rodents and, for at least 6 months, in non-human primates. The distribution of the triazole modification creates a unique hydrogel surface that inhibits recognition by macrophages and fibrous deposition. In addition to the utility of the compounds reported here, our approach may enable the discovery of other materials that mitigate the foreign body response.Leona M. and Harry B. Helmsley Charitable Trust (3-SRA-2014-285-M-R)United States. National Institutes of Health (EB000244)United States. National Institutes of Health (EB000351)United States. National Institutes of Health (DE013023)United States. National Institutes of Health (CA151884)United States. National Institutes of Health (P41EB015871-27)National Cancer Institute (U.S.) (P30-CA14051

    Die Stoffwechselwirkungen der Schilddrüsenhormone

    Get PDF

    Association analysis of low-phosphorus tolerance in West African pearl millet using DArT markers

    Get PDF
    Pearl millet [Pennisetum glaucum (L.) R. Br.] is a food security crop in the harshest agricultural regions of the world. While low soil phosphorus (P) availability is a big constraint on its production, especially in West Africa (WA), information on genomic regions responsible for low-P tolerance in pearl millet is generally lacking. We present the first report on genetic polymorphisms underlying several plant P-related parameters, flowering time (FLO) and grain yield (GY) under P-limiting conditions based on 285 diversity array technology markers and 151 West African pearl millet inbred lines phenotyped in six environments in WA under both high-P and low-P conditions. Nine markers were significantly associated with P-related traits, nine markers were associated with FLO, whereas 13 markers were associated with GY each explaining between 5.5 and 15.9 % of the observed variation. Both constitutive and adaptive associations were observed for FLO and GY, with markers PgPb11603 and PgPb12954 being associated with the most stable effects on FLO and GY, respectively, across locations. There were a few shared polymorphisms between traits, especially P-efficiency-related traits and GY, implying possible colocation of genomic regions responsible for these traits. Our findings help bridge the gap between quantitative and molecular methods of studying complex traits like low-P tolerance in WA. However, validation of these markers is necessary to determine their potential applicability in marker-assisted selection programs targeting low-P environments, which are especially important in WA where resource-poor farmers are expected to be the hardest hit by the approaching global P crisis
    corecore