8 research outputs found

    Laser Frequency Noise Stabilisation and Interferometer Path Length Differences on LISA Pathfinder

    Get PDF
    The LISA Pathfinder mission is a technology demonstrator for a LISA-like gravitational wave observatory in space. Its first results already exceed the expectations. This is also true for the optical metrology system which measures the distance in between the two free-floating test masses with unpreceded precision. One noise source that can possibly affect the measurement is the laser frequency noise. It is measured with a dedicated interferometer and suppressed with a control loop. We measured the laser frequency noise and characterised the control loop in flight. The coupling of laser frequency noise into the measured phase is directly proportional to the path length difference in the respective interferometer. Dedicated experiments have been performed to estimate the path length difference in flight. In addition, this frequency stabilisation scheme is also a possible solution for the LISA mission.DLRFederal Ministry for Economic Affairs and Energ

    Coupling of relative intensity noise and pathlength noise to the length measurement in the optical metrology system of LISA Pathfinder

    Get PDF
    LISA Pathfinder is a technology demonstration mission for the space-based gravitational wave observatory, LISA. It demonstrated that the performance requirements for the interferometric measurement of two test masses in free fall can be met. An important part of the data analysis is to identify the limiting noise sources. [1] This measurement is performed with heterodyne interferometry. The performance of this optical metrology system (OMS) at high frequencies is limited by sensing noise. One such noise source is Relative Intensity Noise (RIN). RIN is a property of the laser, and the photodiode current generated by the interferometer signal contains frequency dependant RIN. From this electric signal the phasemeter calculates the phase change and laser power, and the coupling of RIN into the measurement signal depends on the noise frequency. RIN at DC, at the heterodyne frequency and at two times the heterodyne frequency couples into the phase. Another important noise at high frequencies is path length noise. To reduce the impact this noise is suppressed with a control loop. Path length noise not suppressed will couple directly into the length measurement. The subtraction techniques of both noise sources depend on the phase difference between the reference signal and the measurement signal, and thus on the test mass position. During normal operations we position the test mass at the interferometric zero, which is optimal for noise subtraction purposes. This paper will show results from an in-flight experiment where the test mass position was changed to make the position dependant noise visible.Federal Ministry for Economic Affairs and Energy/FKZ/50OQ0501Federal Ministry for Economic Affairs and Energy/FKZ/50OQ160

    LISA Pathfinder: OPD loop characterisation

    Get PDF
    The optical metrology system (OMS) of the LISA Pathfinder mission is measuring the distance between two free-floating test masses with unprecedented precision. One of the four OMS heterodyne interferometers reads out the phase difference between the reference and the measurement laser beam. This phase from the reference interferometer is common to all other longitudinal interferometer read outs and therefore subtracted. In addition, the phase is fed back via the digital optical pathlength difference (OPD) control loop to keep it close to zero. Here, we analyse the loop parameters and compare them to on-ground measurement results

    Coupling of relative intensity noise and pathlength noise to the length measurement in the optical metrology system of LISA Pathfinder

    Get PDF
    LISA Pathfinder is a technology demonstration mission for the space-based gravitational wave observatory, LISA. It demonstrated that the performance requirements for the interferometric measurement of two test masses in free fall can be met. An important part of the data analysis is to identify the limiting noise sources. [1] This measurement is performed with heterodyne interferometry. The performance of this optical metrology system (OMS) at high frequencies is limited by sensing noise. One such noise source is Relative Intensity Noise (RIN). RIN is a property of the laser, and the photodiode current generated by the interferometer signal contains frequency dependant RIN. From this electric signal the phasemeter calculates the phase change and laser power, and the coupling of RIN into the measurement signal depends on the noise frequency. RIN at DC, at the heterodyne frequency and at two times the heterodyne frequency couples into the phase. Another important noise at high frequencies is path length noise. To reduce the impact this noise is suppressed with a control loop. Path length noise not suppressed will couple directly into the length measurement. The subtraction techniques of both noise sources depend on the phase difference between the reference signal and the measurement signal, and thus on the test mass position. During normal operations we position the test mass at the interferometric zero, which is optimal for noise subtraction purposes. This paper will show results from an in-flight experiment where the test mass position was changed to make the position dependant noise visibl

    Radiation pressure calibration and test mass reflectivities for LISA Pathfinder

    Get PDF
    This paper describes a series of experiments which were carried out during the main operations of LISA Pathfinder. These experiments were performed by modulating the power of the measurement and reference beams. In one series of experiments the beams were sequentially switched on and off. In the other series of experiments the powers of the beams were modulated within 0.1% and 1% of the constant power. These experiments use recordings of the total power measured on the photodiodes to infer the properties of the Optical Metrology System (OMS), such as reflectivities of the test masses and change of the photodiode efficiencies with time. In the first case the powers are back propagated from the different photodiodes to the same place on the optical bench to express the unknown quantities in the measurement with the complimentary photodiode measurements. They are combined in the way that the only unknown left is the test mass reflectivities. The second experiment compared two estimates of the force applied to the test masses due to the radiation pressure that appears because of the beam modulations. One estimate of the force is inferred from the measurements of the powers on the photodiodes and propagation of this measurement to the test masses. The other estimation of the force is done by calculating it from the change in the main scientific output of the instrument – differential displacement of the two test masses

    LISA Pathfinder: Understanding DWS noise performance for the LISA mission

    Get PDF
    ESA's L3 Laser Interferometer Space Antenna (LISA) mission contains a mechanism to compensate for out-of-plane angles between the received and emitted beams of the three satellites. Depending on the configuration of this Point-Ahead Angle Mechanism (PAAM) it is expected to contribute readout noise through Differential Wavefront Sensing (DWS). This was investigated with LISA Pathfinder (LPF) through a dedicated investigation. One of the two free-falling test masses was rotated via the on-board electrostatic actuators while the resulting angular noise in the differential interferometer between the two test masses was measured. For angles between −250 ÎŒrad to 250 ÎŒrad and corresponding contrast in the range of 59.4 % to 97.9 % an increased spectral density was found. The differential displacement noise remains almost unchanged for these misalignments.The Albert-Einstein-Institut acknowledges the support of the German Space Agency, DLR. The work is supported by the Federal Ministry for Economic Affairs and Energy based on a resolution of the German Bundestag (FKZ 50OQ0501 and FKZ 50OQ1601)

    Laser Frequency Noise Stabilisation and Interferometer Path Length Differences on LISA Pathfinder

    No full text
    The LISA Pathfinder mission is a technology demonstrator for a LISA-like gravitational wave observatory in space. Its first results already exceed the expectations. This is also true for the optical metrology system which measures the distance in between the two free-floating test masses with unpreceded precision. One noise source that can possibly affect the measurement is the laser frequency noise. It is measured with a dedicated interferometer and suppressed with a control loop. We measured the laser frequency noise and characterised the control loop in flight. The coupling of laser frequency noise into the measured phase is directly proportional to the path length difference in the respective interferometer. Dedicated experiments have been performed to estimate the path length difference in flight. In addition, this frequency stabilisation scheme is also a possible solution for the LISA mission

    The free-fall mode experiment on LISA Pathfinder: first results

    No full text
    The LISA Pathfinder space mission is testing the critical experimental challenge for LISA by measuring the differential acceleration between two free-falling test masses inside a single co-orbiting spacecraft at a level of sub-femto-g for frequencies down to 0.1mHz. In LPF it is necessary that one test mass (TM) is electrostatically forced to follow the orbit of the other TM. This force represents a noise source in differential acceleration at frequencies below 1mHz. The free-fall mode experiment has been performed in order to reduce this source of noise: the actuation is limited to short impulses on one TM, so that it is in free fall between two successive kicks, while the other TM is drag-free. The free-fall mode thus provides a different technique for measuring the differential TM acceleration without the added force noise and calibration issues introduced by the actuator. Data analysis challenge is related to the presence of the kicks: they represent a high-noise contribution and need to be removed, thus leaving short gaps in data. This article presents preliminary data of the LPF free-fall measurement campaign and describes the three data analysis techniques developed to mitigate the presence of gaps
    corecore