6 research outputs found

    Magnetism in Gd-W films

    Get PDF
    Vapor condensation techniques are useful to prepare magnetic alloys whose components have low or even negligible equilibrium mutual solubility. In this work, one of these techniques-sputtering-was used to obtain Gd(x)W(1-x) alloys whose magnetic properties were investigated as a function of the Gd atomic concentration x. Gadolinium and various Gd-based alloys are promising materials for magnetic refrigeration and this was one of the motivations for this study. The Gd(x)-W(1-x) films were sputter deposited from Gd and W targets with x ranging from 0 to 1 as determined by x-ray energy-dispersive spectroscopic analyses. X-ray diffraction patterns indicate that crystalline structures were formed at low and high Gd concentrations, while at intermediate concentrations, the films were amorphous. Magnetization measurements, performed as a function of temperature and with static and alternating applied fields, reveal a spin glasslike behavior in all the W-containing samples for temperatures below the freezing temperature T(f). For low and intermediate Gd concentrations, and for T>T(f), the films were paramagnetic, while a ferromagnetic phase was observed in the Gd-W alloy of the highest Gd content. The magnetocaloric effect was investigated from the magnetization isotherms M versus H, from which the isothermal magnetic entropy variation Delta S(M) as a function of T, for the removal of an applied field of 50 kOe, was determined. It was observed that the maximum value of Delta S(M) for each Delta S(M) versus T curve and the temperature at which these maxima occur, are strongly dependent on x. (C) 2008 American Institute of Physics.103

    Magnetic and structural studies on nanostructured Gd/Cr multilayer films

    No full text
    Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)Investigations of magnetic phases, transition temperatures and coercivity were performed inmultilayered Gd/Cr films as a function of the crystalline state and morphology of the Gd layers. The films were deposited by dc magnetron sputtering at three substrate temperatures, T-s, (room temperature, 300 and 500 degrees C). The Gd and Cr thicknesses were of 10 and 30 nm, respectively. Two series of three films were prepared. In one of the series, the films had a single Gd/Cr bilayer; in the other, 15 bilayers. The discontinuous or granular nature of the Gd layers was revealed by scanning electron microscopy Grazing incidence angle x-ray diffraction was used to investigate the crystalline state of the Gd and Cr layers. These techniques revealed that grain average size and crystalline order increase with increasing T-s. From dc magnetic measurements, the co-existence of ferromagnetic and superferromagnetic phases in the Gd layers was observed, and Curie transition temperatures, T-C, were determined. High coercive fields at low temperature (2 K) were measured in hysteresis cycles. Field-cooled and zero field-cooled magnetizations as functions of temperature curves exhibited, for some of the samples, a low temperature peak suggesting a freezing transition to a cluster glass state. This was confirmed by complementary ac-susceptibility measurements carried out as a function of temperature, for various frequencies of the ac field. Some results of this work - the decline in TC for decreasing Gd grain size, the high coercive field and its dependence on particle size, and the behavior of the magnetization at low temperatures for the sample deposited at room temperature - are discussed in terms of finite size and surface effects in nanosized particles. Published by Elsevier B.V.545496502Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq

    Magnetic properties of metastable Gd-Cr alloys

    No full text
    Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)We report on the magnetization, magnetocaloric effect, magnetic ordering temperatures, saturation magnetic moments and anisotropy of sputter-deposited Gd(x)Cr(1-x) alloys with Gd atomic concentrations, x, ranging from 0.13 to 0.52. The complex magnetic nature of the Gd-Cr films was revealed from the M x H isotherms, which do not show saturation even at an applied field of 70 kOe and a temperature of 2 K and do not exhibit a linear behavior at higher temperatures. For some of the samples, the isotherms were used to determine the isothermal entropy variation as a function of temperature, for a change of 50 kOe in the applied magnetic field. The saturation magnetic moment varies with x and follows the dilution law, implying that the Cr atoms do not contribute to the total moment of the Gd-Cr alloys. Both static magnetization and dynamic susceptibility measurements reveal the existence of a magnetic glassy behavior in the alloys, which occurs below a freezing temperature. The existence of anisotropy at low temperatures for all samples was revealed by their M x H hysteresis loops from which the in-plane coercive fields, H(c), were determined. A monotonical increase in H(c) with increasing Gd concentration was observed. (C) 2011 Elsevier B.V. All rights reserved.3231520052011Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq

    Bibliography

    No full text
    corecore