9 research outputs found

    Computation of Solar Radiative Fluxes by 1D and 3D Methods Using Cloudy Atmospheres Inferred from A-train Satellite Data

    Get PDF
    The main point of this study was to use realistic representations of cloudy atmospheres to assess errors in solar flux estimates associated with 1D radiative transfer models. A scene construction algorithm, developed for the EarthCARE satellite mission, was applied to CloudSat, CALIPSO, and MODIS satellite data thus producing 3D cloudy atmospheres measuring 60 km wide by 13,000 km long at 1 km grid-spacing. Broadband solar fluxes and radiances for each (1 km)2 column where then produced by a Monte Carlo photon transfer model run in both full 3D and independent column approximation mode (i.e., a 1D model)

    Uses of the Berenger PML in Pseudospectral Methods for Maxwell’s Equations

    No full text

    Coupling sky images with radiative transfer models: A new method to estimate cloud optical depth

    No full text
    A method for retrieving cloud optical depth (τc) using a UCSD developed ground-based sky imager (USI) is presented. The radiance red-blue ratio (RRBR) method is motivated from the analysis of simulated images of various τc produced by a radiative transfer model (RTM). From these images the basic parameters affecting the radiance and red-blue ratio (RBR) of a pixel are identified as the solar zenith angle (θ0), τc, solar pixel angle/scattering angle (vs), and pixel zenith angle/view angle (vz). The effects of these parameters are described and the functions for radiance, Iλ (τc; θ0;vs;vz), and RBR.τc; θ0;vs; vz/ are retrieved from the RTM results. RBR, which is commonly used for cloud detection in sky images, provides non-unique solutions for τc, where RBR increases with τc up to about τc = 1 (depending on other parameters) and then decreases. Therefore, the RRBR algorithm uses the measured Imeasλ (vs;vz), in addition to RBRmeas (vs;vz), to obtain a unique solution for τc. The RRBR method is applied to images of liquid water clouds taken by a USI at the Oklahoma Atmospheric Radiation Measurement (ARM) program site over the course of 220 days and compared against measurements from a microwave radiometer (MWR) and output from the Min et al. (2003) method for overcast skies. τc values ranged from 0 to 80 with values over 80, being capped and registered as 80. A τc RMSE of 2.5 between the Min et al. (2003) method and the USI are observed. The MWR and USI have an RMSE of 2.2, which is well within the uncertainty of the MWR. The procedure developed here provides a foundation to test and develop other cloud detection algorithms
    corecore