28 research outputs found

    Increased Anxiety-Like Behavior and Enhanced Synaptic Efficacy in the Amygdala of GluR5 Knockout Mice

    Get PDF
    GABAergic transmission in the amygdala modulates the expression of anxiety. Understanding the interplay between GABAergic transmission and excitatory circuits in the amygdala is, therefore, critical for understanding the neurobiological basis of anxiety. Here, we used a multi-disciplinary approach to demonstrate that GluR5-containing kainate receptors regulate local inhibitory circuits, modulate the excitatory transmission from the basolateral amygdala to the central amygdala, and control behavioral anxiety. Genetic deletion of GluR5 or local injection of a GluR5 antagonist into the basolateral amygdala increases anxiety-like behavior. Activation of GluR5 selectively depolarized inhibitory neurons, thereby increasing GABA release and contributing to tonic GABA current in the basolateral amygdala. The enhanced GABAergic transmission leads to reduced excitatory inputs in the central amygdala. Our results suggest that GluR5 is a key regulator of inhibitory circuits in the amygdala and highlight the potential use of GluR5-specific drugs in the treatment of pathological anxiety

    Exercise and Polycystic Ovary Syndrome.

    Get PDF
    Polycystic ovary syndrome (PCOS) is a complex endocrinopathy affecting both the metabolism and reproductive system of women of reproductive age. Prevalence ranges from 6.1-19.9% depending on the criteria used to give a diagnosis. PCOS accounts for approximately 80% of women with anovulatory infer-tility, and causes disruption at various stages of the reproductive axis. Evidence suggests lifestyle modification should be the first line of therapy for women with PCOS. Several studies have examined the impact of exercise interventions on reproductive function, with results indicating improvements in menstrual and/or ovulation frequency following exercise. Enhanced insulin sensitivity underpins the mechanisms of how exercise restores reproductive function. Women with PCOS typically have a cluster of metabolic abnormalities that are risk factors for CVD. There is irrefutable evidence that exercise mitigates CVD risk factors in women with PCOS. The mechanism by which exercise improves many CVD risk factors is again associated with improved insulin sensitivity and decreased hyperinsulinemia. In addition to cardiometabolic and reproductive complications, PCOS has been associated with an increased prevalence of mental health disorders. Exercise improves psychological well-being in women with PCOS, dependent on certain physiological factors. An optimal dose-response relationship to exercise in PCOS may not be feasible because of the highly individualised characteristics of the disorder. Guidelines for PCOS suggest at least 150 min of physical activity per week. Evidence confirms that this should form the basis of any clinician or healthcare professional prescription

    Mild Acidosis Enhances AMPA Receptor-Mediated Intracellular Zinc Mobilization in Cortical Neurons

    No full text
    Overactivation of glutamate receptors and subsequent deregulation of the intraneuronal calcium ([Ca2+]i) levels are critical components of the injurious pathways initiated by cerebral ischemia. Another hallmark of stroke is parenchymal acidosis, and we have previously shown that mild acidosis can act as a switch to decrease NMDAR-dependent neuronal loss while potentiating the neuronal loss mediated by AMPARs. Potentiation of AMPAR-mediated neuronal death in an acidotic environment was originally associated only with [Ca2+]i dyshomeostasis, as assessed by Ca2+ imaging; however, intracellular dyshomeostasis of another divalent cation, Zn2+, has recently emerged as another important co-factor in ischemic neuronal injury. Rises in [Zn2+]i greatly contribute to the fluorescent changes of Ca2+-sensitive fluorescent probes, which also have great affinity for Zn2+. We therefore revisited our original findings (Mcdonald et al., 1998) and investigated if AMPAR-mediated fura-2 signals we observed could also be partially due to [Zn2+]i increases. Fura-2 loaded neuronal cultures were exposed to the AMPAR agonist, kainate, in a physiological buffer at pH 7.4 and then washed either at pH 7.4 or pH 6.2. A delayed recovery of fura-2 signals was observed at both pHs. Interestingly this impaired recovery phase was found to be sensitive to chelation of intracellular Zn2+. Experiments with the Zn2+ sensitive (and Ca2+-insensitive) fluorescent probe FluoZin-3 confirmed the idea that AMPAR activation increases [Zn2+]i, a phenomenon that is potentiated by mild acidosis. Additionally, our results show that selective Ca2+ imaging mandates the use of intracellular heavy metal chelators to avoid confounding effects of endogenous metals such as Zn2+

    Negative Neuroplasticity in Chronic Traumatic Brain Injury and Implications for Neurorehabilitation

    Full text link
    corecore