4,673 research outputs found

    Low-voltage polymer thin-film transistors with high-k HfTiO gate dielectric annealed in NH3 or N2

    Get PDF
    OTFTs with P3HT as organic semiconductor and HfTiO as gate dielectric have been studied in this work. The HfTiO dielectric film was prepared by RF sputtering of Hf and DC sputtering of Ti at room temperature. Subsequently, the dielectric film was annealed in an NH3 or N2 ambient at 200 °C. Then a layer of OTS was deposited by spin-coating method to improve the surface characteristics of the gate dielectric. Afterwards, P3HT was deposited by spin-coating method. The OTFTs were characterized by I-V measurement and 1/f noise measurement. The OTFT with gate dielectric annealed in NH3 displays higher carrier mobility, smaller threshold voltage, smaller sub-threshold swing, and lower 1/f noise level than the OTFT annealed in N2. Moreover, the HfTiO dielectric film annealed in NH3 shows higher dielectric constant. In summary, HfTiO film annealed in NH 3 at low temperature is a promising candidate to act as the gate dielectric of high-quality low-voltage OTFTs. ©2009 IEEE.published_or_final_versionThe IEEE International Conference of Electron Devices and Solid-State Circuits (EDSSC 2009), Xi'an, China, 25-27 December 2009. In Proceedings of EDSSC, 2009, p. 201-20

    Effects of annealing temperature and gas on pentacene OTFTs with HfLaO as gate dielectric

    Get PDF
    Pentacene organic thin-film transistors (OTFTs) with high-κ HfLaO as gate insulator were fabricated. HfLaO film was prepared by sputtering method. To improve the film quality, the dielectric was annealed in N 2, NH 3, or O 2 at two temperatures, i.e., 200 °C and 400 °C, respectively. The I-V characteristics of the OTFTs and C-V characteristics of corresponding organic capacitors were measured. The OTFTs could operate at a low operating voltage of below 5 V, and the dielectric constant of the HfLaO film could be above ten. For all the annealing gases, the OTFTs annealed at 400 °C achieved higher carrier mobility than their counterparts annealed at 200 °C (with the one annealed in NH 3 at 400 °C showing the highest carrier mobility of 0.45 cm 2/ V·s), which could be supported by SEM images which indicate that pentacene tended to form larger grains on HfLaO annealed at 400 °C than on that annealed at 200 °C. The C-V measurement of the organic capacitors indicated that the localized charge density in the organic semiconductor/oxide was lower for the 400 °C annealing than for the 200 °C annealing. Furthermore, through the characterization of gate current leakage, HfLaO film annealed at 400 °C achieved much smaller leakage than that annealed at 200 °C. Since the maximum processing temperature of ITO glass substrates is around 400 °C , this study shows that 400 °C is suitable for the annealing of HfLaO film in high-performance OTFTs on glass substrate. © 2011 IEEE.published_or_final_versio

    Pentacene thin-film transistors with HfO2 gate dielectric annealed in NH3 or N2O

    Get PDF
    Pentacene-based Organic Thin-Film Transistor (OTFT) with HfO 2 as gate dielectric is studied in this work. The HfO2 dielectric was prepared by RF sputtering at room temperature, and subsequently annealed in N 2O or NH 3 at 200 °C. The OTFTs were characterized by IV measurement and 1/f noise measurement. The OTFTs show small threshold voltage and can operate at as low as 3 V. Results indicate that the OTFT annealed in NH 3 shows higher carrier mobility, larger on/off current ratio, smaller sub-threshold swing and smaller Hooge parameter than the OTFT annealed in N 2O. Therefore, NH 3-annealed HfO 2 is a promising gate dielectric for the fabrication of high-performance OTFTs. © 2008 IEEE.published_or_final_versio

    Evoc-Learn - High quality simulation of early vocal learning

    Get PDF
    Evoc-Learn is a system for simulating early vocal learning of spoken language in ways that can overcome some of the major bottlenecks in vocal learning. The system consists of VocalTractLab, a geometrical three-dimensional vocal tract model for simulating aeroacoustics and articulatory dynamics, a coarticulation model for controlling the temporal dynamics of articulation, and a sensory feedback system for guiding the learning process. We will demonstrate each component of Evoc-Learn and show how they work together to simulate the learning of highly intelligible speech

    Effects of different annealing gases on pentacene OTFT with HfLaO gate dielectric

    Get PDF
    Pentacene organic thin-film transistors (OTFTs) with HfLaO high-kappa gate dielectric were fabricated. The dielectric was prepared by a sputtering method and then annealed in N2,NH3,O2, or NO at 400°C. The carrier mobility of the NH3-annealed OTFT could reach 0.59 cm2/V̇s, which is higher than those of the other three devices. Moreover, the NH3-annealed OTFT obtained the smallest subthreshold swing of 0.26 V/dec among them. Furthermore,1/f noise measurement indicated that the NH3-annealed OTFT achieved the smallest 1/f noise. All these should be attributed to the improved interface between the gate dielectric and the organic semiconductor associated with the passivation effects of the NH3 annealing on the dielectric surface. © 2010 IEEE.published_or_final_versio

    Can we rely on smartphone applications?

    Get PDF
    Smartphones are becoming necessary tools in the daily lives of millions of users who rely on these devices and their applications. There are thousands of applications for smartphone devices such as the iPhone, Blackberry, and Android, thus their reliability has become paramount for their users. This work aims to answer two related questions: (1) Can we assess the reliability of mobile applications by using the traditional reliability models? (2) Can we model adequately the failure data collected from many users? Firstly, it has been proved that the three most used software reliability models have fallen short of the mark when applied to smartphone applications; their failures were traced back to specific features of mobile applications. Secondly, it has been demonstrated that the Weibull and Gamma distribution models can adequately fit the observed failure data, thus providing better means to predict the reliability of smartphone applications

    The uniqueness of flow in probing the aggregation behavior of clinically relevant antibodies

    Get PDF
    The development of therapeutic monoclonal antibodies (mAbs) can be hindered by their tendency to aggregate throughout their lifetime, which can illicit immunogenic responses and render mAb manufacturing unfeasible. Consequently, there is a need to identify mAbs with desirable thermodynamic stability, solubility, and lack of self‐association. These behaviors are assessed using an array of in silico and in vitro assays, as no single assay can predict aggregation and developability. We have developed an extensional and shear flow device (EFD), which subjects proteins to defined hydrodynamic forces which mimic those experienced in bioprocessing. Here, we utilize the EFD to explore the aggregation propensity of 33 IgG1 mAbs, whose variable domains are derived from clinical antibodies. Using submilligram quantities of material per replicate, wide‐ranging EFD‐induced aggregation (9‐81% protein in pellet) was observed for these mAbs, highlighting the EFD as a sensitive method to assess aggregation propensity. By comparing the EFD‐induced aggregation data to those obtained previously from 12 other biophysical assays, we show that the EFD provides distinct information compared with current measures of adverse biophysical behavior. Assessing a candidate's liability to hydrodynamic force thus adds novel insight into the rational selection of developable mAbs that complements other assays

    Spinor Helicity and Dual Conformal Symmetry in Ten Dimensions

    Full text link
    The spinor helicity formalism in four dimensions has become a very useful tool both for understanding the structure of amplitudes and also for practical numerical computation of amplitudes. Recently, there has been some discussion of an extension of this formalism to higher dimensions. We describe a particular implementation of the spinor-helicity method in ten dimensions. Using this tool, we study the tree-level S-matrix of ten dimensional super Yang-Mills theory, and prove that the theory enjoys a dual conformal symmetry. Implications for four-dimensional computations are discussed.Comment: 24 pages, 1 figure

    Atropselective syntheses of (-) and (+) rugulotrosin A utilizing point-to-axial chirality transfer

    Full text link
    Chiral, dimeric natural products containing complex structures and interesting biological properties have inspired chemists and biologists for decades. A seven-step total synthesis of the axially chiral, dimeric tetrahydroxanthone natural product rugulotrosin A is described. The synthesis employs a one-pot Suzuki coupling/dimerization to generate the requisite 2,2'-biaryl linkage. Highly selective point-to-axial chirality transfer was achieved using palladium catalysis with achiral phosphine ligands. Single X-ray crystal diffraction data were obtained to confirm both the atropisomeric configuration and absolute stereochemistry of rugulotrosin A. Computational studies are described to rationalize the atropselectivity observed in the key dimerization step. Comparison of the crude fungal extract with synthetic rugulotrosin A and its atropisomer verified that nature generates a single atropisomer of the natural product.P50 GM067041 - NIGMS NIH HHS; R01 GM099920 - NIGMS NIH HHS; GM-067041 - NIGMS NIH HHS; GM-099920 - NIGMS NIH HH
    corecore