4,150 research outputs found

    Dynamics and interactions of active rotors

    Full text link
    We consider a simple model of an internally driven self-rotating object; a rotor, confined to two dimensions by a thin film of low Reynolds number fluid. We undertake a detailed study of the hydrodynamic interactions between a pair of rotors and find that their effect on the resulting dynamics is a combination of fast and slow motions. We analyse the slow dynamics using an averaging procedure to take account of the fast degrees of freedom. Analytical results are compared with numerical simulations. Hydrodynamic interactions mean that while isolated rotors do not translate, bringing together a pair of rotors leads to motion of their centres. Two rotors spinning in the same sense rotate with an approximately constant angular velocity around each other, while two rotors of opposite sense, both translate with the same constant velocity, which depends on the separation of the pair. As a result a pair of counter-rotating rotors are a promising model for controlled self-propulsion.Comment: 6 pages, 6 figure

    Spontaneous imbibition in a slit pore: a lattice-gas dynamic mean field study

    Get PDF
    We present a theoretical study of spontaneous imbibition in a slit pore using a lattice-gas model and a dynamic mean-field theory. Emphasis is put on the influence of the precursor films on the speed of the imbibition front due to liquid mass conservation. This work is dedicated to Bob Evans for his 65th birthday in recognition of his seminal contributions to the theory of fluids in confining geometries.Comment: 17 pages, 13 figure

    QCA as an approach to make sense of micro-level data-centric practices for policy innovation: a walk-through

    Get PDF
    The paper explores the potentialities and challenges of using a comparative research method — Qualitative Comparative Analysis (QCA) — as a methodological approach for researching policy innovation. The paper argues for QCA to constitute a rigorous and systematic way to explore policy innovation using micro-level experimental and innovative practices in the public sector as the empirical base. Conceptually, we propose considering the importance of policy workers in policy innovation processes. This proposal addresses a gap in policy innovation research that appears to have mostly focused on entrepreneurship while under-appreciating other individual agency explanations of change (e.g., policy workers). Policy innovation researchers should therefore reframe the concept of policy innovation from an out-based view to a process-based view, while avoiding the development of ideographic knowledge. To address this issue, we provide a walk-through of using QCA as a methodological approach to investigate data-centric practices in the public sector. In the walk-through, we simulate the execution of the first three steps of approaching different cases of data-centric practices through QCA, identifying variables and calibrating them. Other researchers might find this approach useful to investigate similar innovative practices in the public sector in the perspective of policy innovation

    A novel bacterial l-arginine sensor controlling c-di-GMP levels in Pseudomonas aeruginosa

    Get PDF
    Nutrients such as amino acids play key roles in shaping the metabolism of microorganisms in natural environments and in host–pathogen interactions. Beyond taking part to cellular metabolism and to protein synthesis, amino acids are also signaling molecules able to influence group behavior in microorganisms, such as biofilm formation. This lifestyle switch involves complex metabolic reprogramming controlled by local variation of the second messenger 3′, 5′-cyclic diguanylic acid (c-di-GMP). The intracellular levels of this dinucleotide are finely tuned by the opposite activity of dedicated diguanylate cyclases (GGDEF signature) and phosphodiesterases (EAL and HD-GYP signatures), which are usually allosterically controlled by a plethora of environmental and metabolic clues. Among the genes putatively involved in controlling c-di-GMP levels in P. aeruginosa, we found that the multidomain transmembrane protein PA0575, bearing the tandem signature GGDEF-EAL, is an l-arginine sensor able to hydrolyse c-di-GMP. Here, we investigate the basis of arginine recognition by integrating bioinformatics, molecular biophysics and microbiology. Although the role of nutrients such as l-arginine in controlling the cellular fate in P. aeruginosa (including biofilm, pathogenicity and virulence) is already well established, we identified the first l-arginine sensor able to link environment sensing, c-di-GMP signaling and biofilm formation in this bacterium

    Swimmers in thin films: from swarming to hydrodynamic instabilities

    Full text link
    We investigate theoretically the collective dynamics of a suspension of low Reynolds number swimmers that are confined to two dimensions by a thin fluid film. Our model swimmer is characterized by internal degrees of freedom which locally exert active stresses (force dipoles or quadrupoles) on the fluid. We find that hydrodynamic interactions mediated by the film can give rise to spontaneous continuous symmetry breaking (swarming), to states with either polar or nematic homogeneous order. For dipolar swimmers, the stroke averaged dynamics are enough to determine the leading contributions to the collective behaviour. In contrast, for quadrupolar swimmers, our analysis shows that detailed features of the internal dynamics play an important role in determining the bulk behaviour. In the broken symmetry phases, we investigate fluctuations of hydrodynamic variables of the system and find that these destabilize order. Interestingly, this instability is not generic and depends on length-scale.Comment: 4 pages, 2 figures, references added, typos corrected, new introductio

    Violation and persistence of the K-quantum number in warm rotating nuclei

    Full text link
    The validity of the K-quantum number in rapidly rotating warm nuclei is investigated as a function of thermal excitation energy U and angular momentum I, for the rare-earth nucleus 163Er. The quantal eigenstates are described with a shell model which combines a cranked Nilsson mean-field and a residual two-body interaction, together with a term which takes into account the angular momentum carried by the K-quantum number in an approximate way. K-mixing is produced by the interplay of the Coriolis interaction and the residual interaction; it is weak in the region of the discrete rotational bands (U \lesim 1MeV), but it gradually increases until the limit of complete violation of the K-quantum number is approached around U \sim 2 - 2.5 MeV. The calculated matrix elements between bands having different K-quantum numbers decrease exponentially as a function of ΔK\Delta K, in qualitative agreement with recent data.Comment: 29 pages, 7 figure

    Effect of Supplementary Irrigation on Yield of Chickpea Genotypes in a Mediterranean Climate

    Full text link
    Rosana G. Moreira, Editor-in-Chief; Texas A&M UniversityThis is a paper from International Commission of Agricultural Engineering (CIGR, Commission Internationale du Genie Rural) E-Journal Volume 8 (2006): Effect of Supplementary Irrigation on Yield of Chickpea Genotypes in a Mediterranean Climate. Manuscript LW 04 005. Vol. VIII. May, 2006

    On the Complexity of {k}-domination for Chordal Graphs

    Get PDF
    In this work we obtain a new graph class where {k}-DOM is NP-complete: the class of chordal graphs. We also identify some maximal subclasses for which it is polynomial time solvable. By relating this problem with k-DOM, we prove that {k}-DOM is polynomial time solvable for strongly chordal graphs. Besides, by expressing the property involved in k-DOM in Counting Monadic Second- order Logic, we obtain that both problems are linear time solvable for bounded tree-width graphs. In this way we enlarge the family of graphs for which k-DOM is polynomial time solvable.Sociedad Argentina de Informática e Investigación Operativ
    • …
    corecore