3 research outputs found

    ISOGEOMETRIC OVERLAPPING ADDITIVE SCHWARZ PRECONDITIONERS IN COMPUTATIONAL ELECTROCARDIOLOGY

    Get PDF
    In this thesis we present and study overlapping additive Schwarz preconditioner for the isogeometric discretization of reaction-diffusion systems modeling the heart bioelectrical activity, known as the Bidomain and Monodomain models. The cardiac Bidomain model consists of a degenerate system of parabolic and elliptic PDE, whereas the simplified Monodomain model consists of a single parabolic equation. These models include intramural fiber rotation, anisotropic conductivity coefficients and are coupled through the reaction term with a system of ODEs, which models the ionic currents of the cellular membrane. The overlapping Schwarz preconditioner is applied with a PCG accelerator to solve the linear system arising at each time step from the isogeometric discretization in space and a semi-implicit adaptive method in time. A theoretical convergence rate analysis shows that the resulting solver is scalable, optimal in the ratio of subdomain/element size and the convergence rate improves with increasing overlap size. Numerical tests in three-dimensional ellipsoidal domains confirm the theoretical estimates and additionally show the robustness with respect to jump discontinuities of the orthotropic conductivity coefficients
    corecore