3,495 research outputs found

    Parallel processing for digital picture comparison

    Get PDF
    In picture processing an important problem is to identify two digital pictures of the same scene taken under different lighting conditions. This kind of problem can be found in remote sensing, satellite signal processing and the related areas. The identification can be done by transforming the gray levels so that the gray level histograms of the two pictures are closely matched. The transformation problem can be solved by using the packing method. Researchers propose a VLSI architecture consisting of m x n processing elements with extensive parallel and pipelining computation capabilities to speed up the transformation with the time complexity 0(max(m,n)), where m and n are the numbers of the gray levels of the input picture and the reference picture respectively. If using uniprocessor and a dynamic programming algorithm, the time complexity will be 0(m(3)xn). The algorithm partition problem, as an important issue in VLSI design, is discussed. Verification of the proposed architecture is also given

    Coulomb Oscillations in Antidots in the Integer and Fractional Quantum Hall Regimes

    Full text link
    We report measurements of resistance oscillations in micron-scale antidots in both the integer and fractional quantum Hall regimes. In the integer regime, we conclude that oscillations are of the Coulomb type from the scaling of magnetic field period with the number of edges bound to the antidot. Based on both gate-voltage and field periods, we find at filling factor {\nu} = 2 a tunneling charge of e and two charged edges. Generalizing this picture to the fractional regime, we find (again, based on field and gate-voltage periods) at {\nu} = 2/3 a tunneling charge of (2/3)e and a single charged edge.Comment: related papers at http://marcuslab.harvard.ed

    Two-electron photoionization of endohedral atoms

    Full text link
    Using He@C60He@C_{60} as an example, we demonstrate that static potential of the fullerene core essentially alters the cross section of the two-electron ionization differential in one-electron energy dσ++(ω)/dϵd\sigma ^{++}(\omega )/d\epsilon . We found that at high photon energy prominent oscillations appear in it due to reflection of the second, slow electron wave on the C60% C_{60} shell, which "dies out" at relatively high ϵ\epsilon values, of about 2÷\div 3 two-electron ionization potentials. The results were presented for ratios RC60(ω,ϵ)dσ++(ω,ϵ)/dσa++(ω,ϵ)R_{C_{60}}(\omega ,\epsilon)\equiv d\sigma ^{++}(\omega ,\epsilon)/d\sigma ^{a++}(\omega,\epsilon), where dσa++(ω,ϵ)/dϵd\sigma ^{a++}(\omega,\epsilon)/d\epsilon is the two-electron differential photoionization cross section. We have calculated the ratio Ri,ful=σi++(ω)/σia++(ω)R_{i,ful}= \sigma_{i} ^{++}(\omega)/\sigma_{i}^{a++}(\omega), that accounts for reflection of both photoelectrons by the C60C_{60} shell. We have calculated also the value of two-electron photoionization cross section σ++(ω)\sigma ^{++}(\omega) and found that this value is close to that of an isolated HeHe atom.Comment: 13 pages, 4 figure

    Translation-symmetry protected topological orders on lattice

    Full text link
    In this paper we systematically study a simple class of translation-symmetry protected topological orders in quantum spin systems using slave-particle approach. The spin systems on square lattice are translation invariant, but may break any other symmetries. We consider topologically ordered ground states that do not spontaneously break any symmetry. Those states can be described by Z2A or Z2B projective symmetry group. We find that the Z2A translation symmetric topological orders can still be divided into 16 sub-classes corresponding to 16 new translation-symmetry protected topological orders. We introduced four Z2Z_2 topological indices ζkˇ=0,1\zeta_{\v{k}}=0,1 at kˇ=(0,0)\v {k}=(0,0), (0,π)(0,\pi), (π,0)(\pi, 0), (π,π)(\pi ,\pi) to characterize those 16 new topological orders. We calculated the topological degeneracies and crystal momenta for those 16 topological phases on even-by-even, even-by-odd, odd-by-even, and odd-by-odd lattices, which allows us to physically measure such topological orders. We predict the appearance of gapless fermionic excitations at the quantum phase transitions between those symmetry protected topological orders. Our result can be generalized to any dimensions. We find 256 translation-symmetry protected Z2A topological orders for a system on 3D lattice

    A possible supersymmetric solution to the discrepancy between B -> \phi K_S and B -> \eta' K_S CP asymmetries

    Full text link
    We present a possible supersymmetric solution to the discrepancy between the observed mixing CP asymmetries in B -> \phi K_S and B -> \eta' K_S. We show that due to the different parity in the final states of these processes, their supersymmetric contributions from the R-sector have an opposite sign, which naturally explain the large deviation between S_{\phi K_S} and S_{\eta' K_S}. We also consider the proposed mechanisms to solve the puzzle of the observed large branching ratio of B -> \eta' K and study their impact on S_{eta' K_S}.Comment: 4 pages, 2 figure

    Two-Dimensional Inversion Asymmetric Topological Insulators in Functionalized III-Bi Bilayers

    Full text link
    The search for inversion asymmetric topological insulators (IATIs) persists as an effect for realizing new topological phenomena. However, so for only a few IATIs have been discovered and there is no IATI exhibiting a large band gap exceeding 0.6 eV. Using first-principles calculations, we predict a series of new IATIs in saturated Group III-Bi bilayers. We show that all these IATIs preserve extraordinary large bulk band gaps which are well above room-temperature, allowing for viable applications in room-temperature spintronic devices. More importantly, most of these systems display large bulk band gaps that far exceed 0.6 eV and, part of them even are up to ~1 eV, which are larger than any IATIs ever reported. The nontrivial topological situation in these systems is confirmed by the identified band inversion of the band structures and an explicit demonstration of the topological edge states. Interestingly, the nontrivial band order characteristics are intrinsic to most of these materials and are not subject to spin-orbit coupling. Owning to their asymmetric structures, remarkable Rashba spin splitting is produced in both the valence and conduction bands of these systems. These predictions strongly revive these new systems as excellent candidates for IATI-based novel applications.Comment: 17 pages,5figure

    Topological Gauge Structure and Phase Diagram for Weakly Doped Antiferromagnets

    Full text link
    We show that the topological gauge structure in the phase string theory of the {\rm t-J} model gives rise to a global phase diagram of antiferromagnetic (AF) and superconducting (SC) phases in a weakly doped regime. Dual confinement and deconfinement of holons and spinons play essential roles here, with a quantum critical point at a doping concentration xc0.043x_c\simeq 0.043. The complex experimental phase diagram at low doping is well described within such a framework.Comment: 4 pages, 2 figures, modified version, to appear in Phys. Rev. Let

    Quantum simulation of artificial Abelian gauge field using nitrogen-vacancy center ensembles coupled to superconducting resonators

    Full text link
    We propose a potentially practical scheme to simulate artificial Abelian gauge field for polaritons using a hybrid quantum system consisting of nitrogen-vacancy center ensembles (NVEs) and superconducting transmission line resonators (TLR). In our case, the collective excitations of NVEs play the role of bosonic particles, and our multiport device tends to circulate polaritons in a behavior like a charged particle in an external magnetic field. We discuss the possibility of identifying signatures of the Hofstadter "butterfly" in the optical spectra of the resonators, and analyze the ground state crossover for different gauge fields. Our work opens new perspectives in quantum simulation of condensed matter and many-body physics using hybrid spin-ensemble circuit quantum electrodynamics system. The experimental feasibility and challenge are justified using currently available technology.Comment: 6 papes+supplementary materia
    corecore