423 research outputs found

    Coastal sea surface temperature variability along the south coast of South Africa and the relationship to regional and global climate

    Get PDF
    The southern coastline of South Africa is approximately zonal, with a wide (up to 270 km) shelf region. Intense thermoclines are known to be established by insolation on the inner shelf region during summer, upwelling is generated by easterly-component winds, and occasionally Agulhas Current water can be advected close to the coast, particularly in the east. These processes induce daily and seasonal fluctuations of coastal sea-surface temperature (SST), but their influence over longer time scales (interannual) has not yet been tested. Here time series of SST ranging from 12 to 31 years are examined for inter-relationships with local and regional winds, and the southern oscillation index (SOI). The emphasis is on the summer period, and it is found that the correlation between SST and major axis wind anomalies can be improved substantially by considering the frequency of occurrence of winds above given thresholds. Moreover, winds and SSTs are also correlated with the SOI, such that fewer easterly-component winds are experienced at low phases (El Nino) with consequent increases in coastal SST, and correspondingly more easterly-component winds at high phases (La Nina) result in decreased coastal SST; however, these relationships did not hold for a measuring site within a large open bay area. Long-term trends are also established, with substantial increases in SST (0.25°C/decade) in association with greater increases in air temperature (0.36°C/ decade)

    Impact of immunogenicity on clinical efficacy and toxicity profile of biologic agents used for treatment of inflammatory arthritis in children compared to adults

    Get PDF
    The treatment of inflammatory arthritis has been revolutionised by the introduction of biologic treatments. Many biologic agents are currently licensed for use in both paediatric and adult patients with inflammatory arthritis and contribute to improved disease outcomes compared with the pre-biologic era. However, immunogenicity to biologic agents, characterised by an immune reaction leading to the production of anti-drug antibodies (ADAs), can negatively impact the therapeutic efficacy of biologic drugs and induce side effects to treatment. This review explores for the first time the impact of immunogenicity against all licensed biologic treatments currently used in inflammatory arthritis across age, and will examine any significant differences between ADA prevalence, titres and timing of development, as well as ADA impact on therapeutic drug levels, clinical efficacy and side effects between paediatric and adult patients. In addition, we will investigate factors associated with differences in immunogenicity across biologic agents used in inflammatory arthritis, and their potential therapeutic implications

    A Cellular Automata Model with Probability Infection and Spatial Dispersion

    Full text link
    In this article, we have proposed an epidemic model by using probability cellular automata theory. The essential mathematical features are analyzed with the help of stability theory. We have given an alternative modelling approach for the spatiotemporal system which is more realistic and satisfactory from the practical point of view. A discrete and spatiotemporal approach are shown by using cellular automata theory. It is interesting to note that both size of the endemic equilibrium and density of the individual increase with the increasing of the neighborhood size and infection rate, but the infections decrease with the increasing of the recovery rate. The stability of the system around the positive interior equilibrium have been shown by using suitable Lyapunov function. Finally experimental data simulation for SARS disease in China and a brief discussion conclude the paper

    Phase‐amplitude coupling profiles differ in frontal and auditory cortices of bats

    Get PDF
    Neural oscillations are at the core of important computations in the mammalian brain. Interactions between oscillatory activities in different frequency bands, such as delta (1–4 Hz), theta (4–8 Hz) or gamma (>30 Hz), are a powerful mechanism for binding fundamentally distinct spatiotemporal scales of neural processing. Phase‐amplitude coupling (PAC) is one such plausible and well‐described interaction, but much is yet to be uncovered regarding how PAC dynamics contribute to sensory representations. In particular, although PAC appears to have a major role in audition, the characteristics of coupling profiles in sensory and integration (i.e. frontal) cortical areas remain obscure. Here, we address this question by studying PAC dynamics in the frontal‐auditory field (FAF; an auditory area in the bat frontal cortex) and the auditory cortex (AC) of the bat Carollia perspicillata. By means of simultaneous electrophysiological recordings in frontal and auditory cortices examining local‐field potentials (LFPs), we show that the amplitude of gamma‐band activity couples with the phase of low‐frequency LFPs in both structures. Our results demonstrate that the coupling in FAF occurs most prominently in delta/high‐gamma frequencies (1‐4/75‐100 Hz), whereas in the AC the coupling is strongest in the delta‐theta/low‐gamma (2‐8/25‐55 Hz) range. We argue that distinct PAC profiles may represent different mechanisms for neuronal processing in frontal and auditory cortices, and might complement oscillatory interactions for sensory processing in the frontal‐auditory cortex network

    Abstract basins of attraction

    Full text link
    Abstract basins appear naturally in different areas of several complex variables. In this survey we want to describe three different topics in which they play an important role, leading to interesting open problems

    Echolocation-related reversal of information flow in a cortical vocalization network

    Get PDF
    The mammalian frontal and auditory cortices are important for vocal behavior. Here, using local-field potential recordings, we demonstrate that the timing and spatial patterns of oscillations in the fronto-auditory network of vocalizing bats (Carollia perspicillata) predict the purpose of vocalization: echolocation or communication. Transfer entropy analyses revealed predominant top-down (frontal-to-auditory cortex) information flow during spontaneous activity and pre-vocal periods. The dynamics of information flow depend on the behavioral role of the vocalization and on the timing relative to vocal onset. We observed the emergence of predominant bottom-up (auditory-to-frontal) information transfer during the post-vocal period specific to echolocation pulse emission, leading to self-directed acoustic feedback. Electrical stimulation of frontal areas selectively enhanced responses to sounds in auditory cortex. These results reveal unique changes in information flow across sensory and frontal cortices, potentially driven by the purpose of the vocalization in a highly vocal mammalian model

    Mechanisms of innate immune activation by gluten peptide p31-43 in mice

    Get PDF
    Celiac disease (CD) is an immune-mediated enteropathy triggered by gluten in genetically susceptible individuals. Innate immunity contributes to the pathogenesis of CD, but the mechanisms remain poorly understood. Although previous in vitro work suggests that gliadin peptide p31-43 acts as an innate immune trigger, the underlying pathways are unclear and have not been explored in vivo. Here we show that intraluminal delivery of p31-43 induces morphological changes in the small intestinal mucosa of normal mice consistent with those seen in CD, including increased cell death and expression of inflammatory mediators. The effects of p31-43 were dependent on MyD88 and type I IFNs, but not Toll-like receptor 4 (TLR4), and were enhanced by coadministration of the TLR3 agonist polyinosinic:polycytidylic acid. Together, these results indicate that gliadin peptide p31-43 activates the innate immune pathways in vivo, such as IFN-dependent inflammation, relevant to CD. Our findings also suggest a common mechanism for the potential interaction between dietary gluten and viral infections in the pathogenesis of CD

    Using serum metabolomics analysis to predict sub-clinical atherosclerosis in patients with SLE

    Get PDF
    Background: Patients with systemic lupus erythematosus (SLE) have an increased risk of developing cardiovascular disease (CVD) and 30-40% have sub-clinical atherosclerosis on vascular ultrasound scanning. Standard measurements of serum lipids in clinical practice do not predict CVD risk in patients with SLE. We hypothesise that more detailed analysis of lipoprotein taxonomy could identify better predictors of CVD risk in SLE. / Methods: Eighty patients with SLE and no history of CVD underwent carotid and femoral ultrasound scans; 30 had atherosclerosis plaques (SLE-P) and 50 had no plaques (SLE-NP). Serum samples obtained at the time of the scan were analysed using a lipoprotein-focused metabolomics platform assessing 228 metabolites by nuclear magnetic resonance spectroscopy. Data was analysed using logistic regression and five binary classification models with 10-fold cross validation; decision tree, random forest, support vector machine and lasso (Least Absolute Shrinkage and Selection Operator) logistic regression with and without interactions. / Results: Univariate logistic regression identified four metabolites associated with the presence of sub-clinical plaque; three subclasses of very low density lipoprotein (VLDL) (percentage of free cholesterol in medium and large VLDL particles and percentage of phospholipids in chylomicrons and extremely large VLDL particles) and Leucine. Together with age, these metabolites were also within the top features identified by the lasso logistic regression (with and without interactions) and random forest machine learning models. Logistic regression with interactions differentiated between SLE-P and SLE-NP with greatest accuracy (0.800). Notably, percentage of free cholesterol in large VLDL particles and age were identified by all models as being important to differentiate between SLE-P and SLE-NP patients. / Conclusion: Serum metabolites are a promising biomarker for prediction of sub-clinical atherosclerosis development in SLE patients and could provide novel insight into mechanisms of early atherosclerosis development
    • 

    corecore