603 research outputs found

    MASCOT : metadata for advanced scalable video coding tools : final report

    Get PDF
    The goal of the MASCOT project was to develop new video coding schemes and tools that provide both an increased coding efficiency as well as extended scalability features compared to technology that was available at the beginning of the project. Towards that goal the following tools would be used: - metadata-based coding tools; - new spatiotemporal decompositions; - new prediction schemes. Although the initial goal was to develop one single codec architecture that was able to combine all new coding tools that were foreseen when the project was formulated, it became clear that this would limit the selection of the new tools. Therefore the consortium decided to develop two codec frameworks within the project, a standard hybrid DCT-based codec and a 3D wavelet-based codec, which together are able to accommodate all tools developed during the course of the project

    Interrelation between the pseudogap and the incoherent quasi-particle features of high-Tc superconductors

    Full text link
    Using a scenario of a hybridized mixture of localized bipolarons and conduction electrons, we demonstrate for the latter the simultaneous appearance of a pseudogap and of strong incoherent contributions to their quasi-particle spectrum which arise from phonon shake-off effects. This can be traced back to temporarily fluctuating local lattice deformations, giving rise to a double-peak structure in the pair distribution function, which should be a key feature in testing the origin of these incoherent contributions, recently seen in angle-resolved photoemission spectroscopy (ARPES).Comment: 4 pages, 3 figures, to be published in Phys. Rev. Let

    Numerical studies of acceleration of thorium ions by a laser pulse of ultra-relativistic intensity

    Get PDF
    One of the key scientific projects of ELI-Nuclear Physics is to study the production of extremely neutron-rich nuclides by a new reaction mechanism called fission-fusion using laser-accelerated thorium (232Th) ions. This research is of crucial importance for understanding the nature of the creation of heavy elements in the Universe; however, they require Th ion beams of very high beam fluencies and intensities which are inaccessible in conventional accelerators. This contribution is a first attempt to investigate the possibility of the generation of intense Th ion beams by a fs laser pulse of ultra-relativistic intensity. The investigation was performed with the use of fully electromagnetic relativistic particle-in-cell code. A sub-μm thorium target was irradiated by a circularly polarized 20-fs laser pulse of intensity up to 1023 W/cm2, predicted to be attainable at ELI-NP. At the laser intensity ~ 1023 W/cm2 and an optimum target thickness, the maximum energies of Th ions approach 9.3 GeV, the ion beam intensity is > 1020 W/cm2 and the total ion fluence reaches values ~ 1019 ions/cm2. The last two values are much higher than attainable in conventional accelerators and are fairly promising for the planned ELI-NP experiment

    The phase separation-dependent FUS interactome reveals nuclear and cytoplasmic function of liquid–liquid phase separation

    Get PDF
    Liquid–liquid phase separation (LLPS) of proteins and RNAs has emerged as the driving force underlying the formation of membrane-less organelles. Such biomolecular condensates have various biological functions and have been linked to disease. The protein Fused in Sarcoma (FUS) undergoes LLPS and mutations in FUS have been causally linked to the motor neuron disease Amyotrophic Lateral Sclerosis (ALS-FUS). LLPS followed by aggregation of cytoplasmic FUS has been proposed to be a crucial disease mechanism. However, it is currently unclear how LLPS impacts the behaviour of FUS in cells, e.g. its interactome. Hence, we developed a method allowing for the purification of LLPS FUS-containing droplets from cell lysates. We observe substantial alterations in the interactome, depending on its biophysical state. While non-LLPS FUS interacts mainly with factors involved in pre-mRNA processing, LLPS FUS predominantly binds to proteins involved in chromatin remodelling and DNA damage repair. Interestingly, also mitochondrial factors are strongly enriched with LLPS FUS, providing a potential explanation for the observed changes in mitochondrial gene expression in mouse models of ALS-FUS. In summary, we present a methodology to investigate the interactomes of phase separating proteins and provide evidence that LLPS shapes the FUS interactome with implications for function and disease

    Upper critical field Hc2H_{c2} calculations for the high critical temperature superconductors considering inhomogeneities

    Full text link
    We perform calculations to obtain the Hc2H_{c2} curve of high temperature superconductors (HTSC). We consider explicitly the fact that the HTSC possess intrinsic inhomogeneities by taking into account a non uniform charge density ρ(r)\rho(r). The transition to a coherent superconducting phase at a critical temperature TcT_c corresponds to a percolation threshold among different superconducting regions, each one characterized by a given Tc(ρ(r))T_c(\rho(r)). Within this model we calculate the upper critical field Hc2H_{c2} by means of an average linearized Ginzburg-Landau (GL) equation to take into account the distribution of local superconducting temperatures Tc(ρ(r))T_c(\rho(r)). This approach explains some of the anomalies associated with Hc2H_{c2} and why several properties like the Meissner and Nernst effects are detected at temperatures much higher than TcT_c.Comment: Latex text, add reference

    Lipid membranes for membrane proteins

    Get PDF
    Andreas Kukol, ‘Lipid membranes for membrane proteins in Molecular Modeling of Proteins (Clifton: Humana Press/Sringer, 2015), ISBN: 978-1-4939-1464-7, e-BOOK ISBN: 978-1-4939-1465-4Peer reviewe

    Amine functionalization of cholecyst-derived extracellular matrix with generation 1 PAMAM dendrimer

    Get PDF
    This document is the unedited author's version of a Submitted Work that was subsequently accepted for publication in Biomacromolecules, copyright © American Chemical Society after peer review. To access the final edited and published work, see http://pubs.acs.org/doi/pdf/10.1021/bm701055k.A method to functionalize cholecyst-derived extracellular matrix (CEM) with free amine groups was established in an attempt to improve its potential for tethering of bioactive molecules. CEM was incorporated with Generation-1 polyamidoamine (G1 PAMAM) dendrimer by using N-(3-dimethylaminopropyl)-N′-ethylcarbodiimide and N-hydroxysuccinimide cross-linking system. The nature of incorporation of PAMAM dendrimer was evaluated using shrink temperature measurements, Fourier transform infrared (FTIR) assessment, ninhydrin assay, and swellability. The effects of PAMAM incorporation on mechanical and degradation properties of CEM were evaluated using a uniaxial mechanical test and collagenase degradation assay, respectively. Ninhydrin assay and FTIR assessment confirmed the presence of increasing free amine groups with increasing quantity of PAMAM in dendrimer-incorporated CEM (DENCEM) scaffolds. The amount of dendrimer used was found to be critical in controlling scaffold degradation, shrink temperature, and free amine content. Cell culture studies showed that fibroblasts seeded on DENCEM maintained their metabolic activity and ability to proliferate in vitro. In addition, fluorescence cell staining and scanning electron microscopy analysis of cell-seeded DENCEM showed preservation of normal fibroblast morphology and phenotype

    Developments in the negative-U modelling of the cuprate HTSC systems

    Full text link
    The paper deals with the many stands that go into creating the unique and complex nature of the HTSC cuprates above Tc as below. Like its predecessors it treats charge, not spin or lattice, as prime mover, but thus taken in the context of the chemical bonding relevant to these copper oxides. The crucial shell filling, negative-U, double-loading fluctuations possible there require accessing at high valent local environment as prevails within the mixed valent, inhomogeneous two sub-system circumstance of the HTSC materials. Close attention is paid to the recent results from Corson, Demsar, Li, Johnson, Norman, Varma, Gyorffy and colleagues.Comment: 44 pages:200+ references. Submitted to J.Phys.:Condensed Matter, Sept 7 200
    corecore