79 research outputs found

    Systematic analysis of SARS-CoV-2 infection of an ACE2-negative human airway cell

    Get PDF
    Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) spike (S) variants govern transmissibility, responsiveness to vaccination, and disease severity. In a screen for new models of SARS-CoV-2 infection, we identify human H522 lung adenocarcinoma cells as naturally permissive to SARS-CoV-2 infection despite complete absence of angiotensin-converting enzyme 2 (ACE2) expression. Remarkably, H522 infection requires the E484D S variant; viruses expressing wild-type S are not infectious. Anti-S monoclonal antibodies differentially neutralize SARS-CoV-2 E484D S in H522 cells as compared to ACE2-expressing cells. Sera from vaccinated individuals block this alternative entry mechanism, whereas convalescent sera are less effective. Although the H522 receptor remains unknown, depletion of surface heparan sulfates block H522 infection. Temporally resolved transcriptomic and proteomic profiling reveal alterations in cell cycle and the antiviral host cell response, including MDA5-dependent activation of type I interferon signaling. These findings establish an alternative SARS-CoV-2 host cell receptor for the E484D SARS-CoV-2 variant, which may impact tropism of SARS-CoV-2 and consequently human disease pathogenesis

    Redox regulation of mitochondrial fission, protein misfolding, synaptic damage, and neuronal cell death: potential implications for Alzheimerā€™s and Parkinsonā€™s diseases

    Get PDF
    Normal mitochondrial dynamics consist of fission and fusion events giving rise to new mitochondria, a process termed mitochondrial biogenesis. However, several neurodegenerative disorders manifest aberrant mitochondrial dynamics, resulting in morphological abnormalities often associated with deficits in mitochondrial mobility and cell bioenergetics. Rarely, dysfunctional mitochondrial occur in a familial pattern due to genetic mutations, but much more commonly patients manifest sporadic forms of mitochondrial disability presumably related to a complex set of interactions of multiple genes (or their products) with environmental factors (GĀ Ć—Ā E). Recent studies have shown that generation of excessive nitric oxide (NO), in part due to generation of oligomers of amyloid-Ī² (AĪ²) protein or overactivity of the NMDA-subtype of glutamate receptor, can augment mitochondrial fission, leading to frank fragmentation of the mitochondria. S-Nitrosylation, a covalent redox reaction of NO with specific protein thiol groups, represents one mechanism contributing to NO-induced mitochondrial fragmentation, bioenergetic failure, synaptic damage, and eventually neuronal apoptosis. Here, we summarize our evidence in Alzheimerā€™s disease (AD) patients and animal models showing that NO contributes to mitochondrial fragmentation via S-nitrosylation of dynamin-related protein 1 (Drp1), a protein involved in mitochondrial fission. These findings may provide a new target for drug development in AD. Additionally, we review emerging evidence that redox reactions triggered by excessive levels of NO can contribute to protein misfolding, the hallmark of a number of neurodegenerative disorders, including AD and Parkinsonā€™s disease. For example, S-nitrosylation of parkin disrupts its E3 ubiquitin ligase activity, and thereby affects Lewy body formation and neuronal cell death

    Molecular and functional properties of P2X receptorsā€”recent progress and persisting challenges

    Full text link

    N-methyl-D-aspartate receptor subunit NR3A in the retina: Developmental expression, cellular localization, and functional aspects

    No full text
    PURPOSE. Recently, a novel N-methyl-D-aspartate receptor (NMDAR) subunit, NR3A, has been discovered in the brain and shown to decrease NMDAR activity by modulating the calcium permeability of the receptor channel. The insertion of NR3A within the NMDAR complex may thus alter NMDAR properties and play a crucial role during processes of neuronal development and degeneration. The present study is the first to investigate the expression and cellular localization of NR3A on the protein level in the retina and to elucidate its putative functional roles within the retinal circuitry. METHODS. The expression of NR3A in the retina was analyzed by reverse transcription-polymerase chain reaction (RT-PCR), immunohistochemistry, and Western blot analysis. Functional aspects of NR3A in the retina were addressed by measuring the NMDA-induced increase in intracellular calcium, [Ca2+](i), in retinal cells prepared from wild-type (NR3A(+/+)) and NR3A knockout (NR3A(+/-), and NR3A(-/-)) mice. RESULTS. NR3A protein expression was initially observed in the first postnatal week and was predominantly localized to cell bodies in the ganglion cell layer. In older animals, two bands of NR3A immunoreactivity were additionally observed in the inner plexiform layer. NMDA-evoked [Ca2+](i) responses were found to be significantly greater in retinal cells in NR3A(-/-) mice than in wild-type retinas. CONCLUSIONS. The data indicate that NR3A is specifically expressed in the inner retina and may modulate NMDAR-mediated calcium influx and thus [Ca2+](i) levels in retinal ganglion cells anti amacrine cells

    The translational landscape of SARS-CoV-2-infected cells reveals suppression of innate immune genes

    Get PDF
    Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) utilizes a number of strategies to modulate viral and host mRNA translation. Here, we used ribosome profiling in SARS-CoV-2-infected model cell lines and primary airway cells grown at an air-liquid interface to gain a deeper understanding of the translationally regulated events in response to virus replication. We found that SARS-CoV-2 mRNAs dominate the cellular mRNA pool but are not more efficiently translated than cellular mRNAs. SARS-CoV-2 utilized a highly efficient ribosomal frameshifting strategy despite notable accumulation of ribosomes within the slippery sequence on the frameshifting element. In a highly permissive cell line model, although SARS-CoV-2 infection induced the transcriptional upregulation of numerous chemokine, cytokine, and interferon-stimulated genes, many of these mRNAs were not translated efficiently. The impact of SARS-CoV-2 on host mRNA translation was more subtle in primary cells, with marked transcriptional and translational upregulation of inflammatory and innate immune responses and downregulation of processes involved in ciliated cell function. Together, these data reveal the key role of mRNA translation in SARS-CoV-2 replication and highlight unique mechanisms for therapeutic development
    • ā€¦
    corecore