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ABSTRACT Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) utilizes a num-
ber of strategies to modulate viral and host mRNA translation. Here, we used ribosome
profiling in SARS-CoV-2-infected model cell lines and primary airway cells grown at an air-
liquid interface to gain a deeper understanding of the translationally regulated events in
response to virus replication. We found that SARS-CoV-2 mRNAs dominate the cellular
mRNA pool but are not more efficiently translated than cellular mRNAs. SARS-CoV-2 utilized
a highly efficient ribosomal frameshifting strategy despite notable accumulation of ribo-
somes within the slippery sequence on the frameshifting element. In a highly permissive
cell line model, although SARS-CoV-2 infection induced the transcriptional upregulation of
numerous chemokine, cytokine, and interferon-stimulated genes, many of these mRNAs
were not translated efficiently. The impact of SARS-CoV-2 on host mRNA translation was
more subtle in primary cells, with marked transcriptional and translational upregulation of
inflammatory and innate immune responses and downregulation of processes involved in
ciliated cell function. Together, these data reveal the key role of mRNA translation in SARS-
CoV-2 replication and highlight unique mechanisms for therapeutic development.

IMPORTANCE SARS-CoV-2 utilizes a number of strategies to modulate host responses
to ensure efficient propagation. Here, we used ribosome profiling in SARS-CoV-2-
infected cells to gain a deeper understanding of the translationally regulated events
in infected cells. We found that although viral mRNAs are abundantly expressed,
they are not more efficiently translated than cellular mRNAs. SARS-CoV-2 utilized a
highly efficient ribosomal frameshifting strategy and alternative translation initiation
sites that help increase the coding potential of its RNAs. In permissive cells, SARS-
CoV-2 infection induced the translational repression of numerous innate immune
mediators. Though the impact of SARS-CoV-2 on host mRNA translation was more
subtle in primary airway cell cultures, we noted marked transcriptional and transla-
tional upregulation of inflammatory and innate immune responses and downregula-
tion of processes involved in ciliated cell function. Together, these data provide new
insight into how SARS-CoV-2 modulates innate host responses and highlight unique
mechanisms for therapeutic intervention.

KEYWORDS SARS-CoV-2, ribosome profiling, ribo-seq, mRNA translation, virus
replication, ribosomal frameshifting, virus-host interaction, immune response,
translational repression, programmed frameshifting
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The coronavirus (CoV) group encompasses a number of single-stranded, positive-sense
RNA viruses with unusually large genomes (27 to 32 kb), which infect a wide range of

animal species, including humans (1, 2). Presently, severe acute respiratory syndrome coro-
navirus 2 (SARS-CoV-2), the causative agent of the ongoing coronavirus disease 2019
(COVID-19) pandemic, continues to spread around the globe in part due to the emergence
of viral variants with enhanced ability to be transmitted. Despite the development of highly
effective vaccines that substantially reduced COVID-19-associated mortality, there are lim-
ited options for antiviral or immunomodulatory treatment for SARS-CoV-2. A basic under-
standing of the replicative mechanisms of SARS-CoV-2 and associated host responses in
relevant settings can foster the development of virus-specific therapies.

SARS-CoV-2-induced lung disease is thought to be due in part to manipulation of
host type I interferon (IFN) signaling (3). Compared to other CoVs, such as SARS-CoV
and Middle East respiratory syndrome (MERS) virus, SARS-CoV-2 induces a poor or
delayed IFN response in various experimental settings and in vivo (4–6). Extensive char-
acterization of SARS-CoV-2-encoded proteins within the past 2 years has revealed mul-
tiple ways in which SARS-CoV-2 can translationally manipulate host gene expression
and induction of innate immune responses. For example, NSP1 can bind to the mRNA
entry channel of the 40S ribosomal subunit as well as nontranslating 80S ribosomes to
prevent binding of capped mRNA and thus inhibit the formation of the translation ini-
tiation complex (7–10). Recent findings also implicate NSP14 as a translation inhibitor
through its exoribonuclease and N7-methyltransferase activities (11). Under such inhib-
itory conditions SARS-CoV-2 mRNAs are thought to be efficiently translated owing to
the structured elements within the 59 untranslated regions (UTRs) of viral mRNAs (8,
12, 13). On the other hand, the bulk of published research on SARS-CoV-2-host interac-
tions has relied on transcriptional profiling to study the immune response to infection
(4, 14–18). Such approaches may not fully capture the host immune response to infec-
tion, in the face of viral mechanisms that block host mRNA translation. To address this
shortcoming, similar to the work presented in our study, others have conducted ribo-
some profiling assays in SARS-CoV-2 infected Calu-3 lung cells and found that transla-
tion of newly transcribed mRNAs, including those that code for innate immune factors,
can be translationally suppressed upon infection (13, 19, 20). Whether these observa-
tions can be recapitulated in other infection models, including the more physiologi-
cally relevant primary airway epithelial cells, remains unknown.

In addition to manipulation of host mRNA translation, SARS-CoV-2 utilizes programmed
ribosomal frameshifting to successfully launch infection. The first two-thirds of the 59 end of
the SARS-CoV-2 genome is composed of two overlapping open reading frames (ORFs),
ORF1a and ORF1b, which encode two polyproteins, pp1a and pp1ab (21). pp1a is produced
when translation of the genomic RNA terminates at the stop codon of ORF1a. pp1ab is gen-
erated via a programmed21 ribosomal frameshift (PRF) that occurs at the overlap between
ORF1a and ORF1b, permitting the elongating ribosomes to bypass the termination signal in
ORF1a (22). Many proteins encoded in ORF1b are part of the replication complex, thus mak-
ing the21 PRF to generate pp1ab a critical translational event for SARS-CoV-2 replication.

Frameshifting in CoVs is regulated by a highly conserved heptanucleotide slippery
sequence (UUUAAAC) and an RNA pseudoknot structure a few nucleotides down-
stream (22). The current models of PRF suggest that ribosomes stall upon encountering
the pseudoknot (23, 24). This event presumably enhances the efficiency of ribosomal
frameshifting by forcing the ribosomes to pause on the slippery sequence, which in
turn promotes the 21 slippage. CoV frameshifting is thought to occur at a high effi-
ciency, with .50% of the ribosomes continuing into ORF1b (13, 20, 25), compared
with other viruses such as HIV-1, in which only 5 to 10% of ribosomes move past the
frameshifting element (26–28). Recent structural probing studies have revealed that al-
ternative RNA conformations of the frameshifting element (FSE) may underlie the rela-
tively high efficiency of frameshifting for SARS-CoV-2 (29). On the other hand, the
behavior of ribosomes on SARS-CoV-2 RNAs, within the SARS-CoV-2 FSE, and
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throughout the course of infection in physiologically relevant settings has not been
thoroughly studied.

Here, we conducted in-depth ribosome profiling studies to gain insight into the
role of translational regulation in SARS-CoV-2 replication and the resulting host
responses in the highly permissive Vero E6 epithelial cells and the more physiologically
relevant primary human bronchial epithelial cells (HBECs) grown at an air-liquid inter-
face (ALI). We found that SARS-CoV-2 mRNAs quickly dominated the cellular mRNA
pool but were not translated at a higher efficiency than cellular mRNAs overall. In addi-
tion, ribosomes engaged with novel translation initiation sites (TIS) and accumulated
within the slippery site. Nevertheless, ribosome occupancy downstream of the FSE was
high, demonstrating the high efficiency of SARS-CoV-2 frameshifting. As for host
responses, while numerous inflammatory chemokine genes, cytokine genes, and inter-
feron-stimulated genes (ISGs) were upregulated transcriptionally in response to SARS-
CoV-2 in the highly permissive Vero E6 cells, we found that many were not efficiently
translated. Though we found that mRNAs encoding certain immune defense mediators
were also less efficiently translated in SARS-CoV-2-infected primary HBECs, repression
of host mRNA translation in this physiologically relevant system was overall more mod-
est. Taken together, our results define the translational landscape of SARS-CoV-2-
infected cells, revealing key events that may promote viral replication and disarm host
immune responses at the level of mRNA translation.

RESULTS
Ribosome profiling reveals key features of the SARS-CoV-2 translational

program. To study the relationship between transcriptionally and translationally regu-
lated events at early and late phases of SARS-CoV-2 infection, Vero E6 cells infected at
a multiplicity of infection (MOI) of 2 PFU/cell were monitored by transcriptome
sequencing (RNA-seq) and ribosome profiling (ribo-seq) during the course of infection
for 24 h (Fig. 1A). Viral antigen staining of infected cells revealed that the majority of
the cells were infected by 12 h postinfection (hpi) (see Fig. S1A [https://doi.org/10
.5281/zenodo.6382957]). Triplicate sequencing libraries (RNA-seq and ribo-seq) were
generated, and the mapping statistics are detailed in Tables S1 and S2 (https://doi.org/
10.5281/zenodo.6382957). The quality of each sample and ribo-seq library was
assessed as follows. First, despite the high degree of infection, RNA integrity was unaf-
fected (Fig. S1B [https://doi.org/10.5281/zenodo.6382957]), suggesting that selection
of polyadenylated mRNAs for RNA-seq is unlikely to introduce a major 39 bias. Second,
the length of distribution of ribo-seq reads that mapped to cellular and viral transcrip-
tomes were within the expected range of ribosome protected fragments (Fig. S2A
[https://doi.org/10.5281/zenodo.6382957]) (30, 31). We noted that in one replicate
experiment, read lengths tended to be longer, likely due to less extensive nuclease
digestion (data not shown). This library was excluded from relevant analyses down-
stream. Third, irrespective of the differences in the average read-length distribution of
independent experiments, the majority of ribo-seq reads mapped to coding sequences
(CDS) and 59 UTRs, with a clear reduction in the fraction of reads mapping to 39 UTRs
compared to RNA-seq experiments done in parallel (Fig. S2B [https://doi.org/10.5281/
zenodo.6382957]). Finally, mapped ribosome-derived reads within the CDSs were
enriched in fragments that align to the translated frame for cellular mRNAs (Fig. S2C
and D [https://doi.org/10.5281/zenodo.6382957]).

At 2 hpi, only a small fraction of cell-associated mRNA pool was derived from SARS-
CoV-2 RNAs (Fig. 1B). At 6 hpi, a dramatic increase in viral RNA (vRNA) levels was
observed, and by 12 hpi, nearly 80% of the total mRNA pool was of viral origin
(Fig. 1B). Viral RNAs were present abundantly in the ribosome-bound pool as well, and
by 12 hpi, ;50% of the ribosome-protected fragments contained SARS-CoV-2 sequen-
ces (Fig. 1B). Plotting of RNA-seq reads on the SARS-CoV-2 genome demonstrated that
N-derived subgenomic RNAs (sgRNAs) were highly abundant throughout infection
(Fig. S3A and Table S3 [https://doi.org/10.5281/zenodo.6382957]), a finding consistent
with previous RNA-seq studies (32, 33). Ribosome density on SARS-CoV-2 mRNAs
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FIG 1 Ribo-seq reveals the translational program of SARS-CoV-2. (A) Schematic diagram of ribo-seq and RNA-seq experiments conducted
in this study. Vero E6 cells were infected at 2 PFU/cell, and cells were processed for RNA-seq and ribo-seq at 2, 6, 12, and 24 hpi. (B)

(Continued on next page)
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mirrored RNA abundance, with ribosomes enriched primarily on N-coding mRNAs by 6
hpi (Fig. 1C; Fig. S3B and Table S3 [https://doi.org/10.5281/zenodo.6382957]).
Ribosome occupancy across viral RNAs increased further by 12 hpi and remained high
during the remainder of infection (Fig. S3B). Ribosome footprints were nonuniform,
with numerous high- and low-frequency binding sites observed reproducibly across vi-
ral RNAs (Fig. 1C; Fig. S3B) and with expected higher ribosome density within viral
translation initiation sites (Fig. S3B). Overall, the translational efficiency of viral mRNAs
was not substantially different from that of the majority of cellular mRNAs, with
ORF1ab, S, and E mRNAs translated at a modestly higher efficiency and the remainder
of viral mRNAs translated at a lower efficiency than average, a pattern that did not vary
with progression of infection (Fig. S4 [https://doi.org/10.5281/zenodo.6382957]). Thus,
the high abundance of viral mRNAs, as opposed to a specific regulatory mechanism,
appears to ensure viral mRNA translation and protein abundance, a finding consistent
with other published studies (13, 20).

Similar to what occurs in other CoVs, SARS-CoV-2 frameshifting is thought to be
mediated by a conserved heptanucleotide slippery sequence (UUUAAAC) and an RNA
pseudoknot downstream from it spanning nucleotides 13408 to 13540 (Fig. S5A
[https://doi.org/10.5281/zenodo.6382957]). A notable local increase in ribosome occu-
pancy was observed surrounding the slippery site within the frameshifting element
(Fig. 1D; Fig. S5B and Table S3 [https://doi.org/10.5281/zenodo.6382957]), suggesting
the possibility of steric hindrance by the FSE on translating ribosomes. Frameshifting
was also evident in P-site analysis of the mapped reads, with a notable shift from
frame 0 to frame 2 (21 frame), before and after the frameshifting site (Fig. S5B).
Comparison of read density distribution between ORF1a and ORF1b indicated a rela-
tively high efficiency of frameshifting ranging from 50% to 75% throughout the
course of infection (Fig. 1E), in line with published reports for SARS-CoV-2 as well as
other CoVs (20, 25, 34).

SARS-CoV-2 primarily infects ciliated and type 2 pneumocyte cells in the human
lung (35). Differentiated primary HBECs grown at the ALI represent one of the most
physiologically relevant models to study SARS-CoV-2 infection in culture. To corrobo-
rate the above findings from Vero E6 cells, we performed similar ribo-seq studies in
SARS-CoV-2-infected primary HBECs. Cells inoculated at an MOI of 1 PFU/cell were
processed for RNA-seq and ribo-seq at 4, 24, 48, 72, and 96 hpi (Fig. 1F). In contrast to
the highly permissive Vero E6 cells, the progression of infection in HBECs was relatively
slow, and a small percentage of the cells were infected by 4 and 24 hpi (data not
shown). SARS-CoV-2 spread was visible by 48 hpi, and the great majority of ciliated
cells expressing ACE2 were infected by 96 hpi (Fig. S6A and B [https://doi.org/10.5281/
zenodo.6382957]). In agreement, the amount of newly synthesized viral RNAs was low
at 4 hpi, but by 48 hpi, approximately 20% of reads were of viral origin, and this value
did not increase further at 72 and 96 hpi (Fig. 1G; Tables S4 and S5 [https://doi.org/10
.5281/zenodo.6382957]). Of the relatively small number of RNA-seq reads that mapped
to the viral RNAs at 4 hpi, the majority were derived from subgenomic viral mRNAs
coding for N and to a lesser extent from upstream ORFs, including M, ORF6, ORF7, and
ORF8 (Fig. S7A and Table S6 [https://doi.org/10.5281/zenodo.6382957]). Subgenomic viral

FIG 1 Legend (Continued)
Percentages of RNA-seq and Ribo-seq reads uniquely mapping to SARS-CoV-2 and cellular transcripts at the indicated time points
postinfection. Individual data points indicate independent biological replicates. (C) Ribo-seq counts (log10) along the viral genome at 6
hpi (see Fig. S3). The schematic diagram of SARS2 genome features shown at the top is colinear (see Table S3). (D) Ribo-seq read counts
within the frameshifting site across three independent replicates at 6, 12, and 24 hpi. (E) SARS-CoV-2 frameshifting efficiency as
determined by comparing the average read densities between ORF1a and ORF1b regions across three independent replicates and
various time points postinfection. (F) Schematic diagram of ribo-seq and RNA-seq experiments conducted in this study. HBECs grown at
ALI were infected at 1 PFU/cell and cells were processed for RNA-seq and Ribo-seq at 4, 24, 48, 72 and 96 hpi. (G) Percentage of RNA-seq
and Ribo-seq reads uniquely mapping to SARS-CoV-2 and cellular transcripts at the indicated time points postinfection. Note that
infection in this system progresses slower than in Vero E6 cells and a relatively small percentage of cells are infected at 24 and 48 hpi, as
exemplified in Fig. S6. Individual data points indicate independent biological replicates. (H) Ribo-seq counts (log10) along the viral
genome across various time points. The schematic diagram of SARS2 genome features shown at the top is colinear (Fig. S7 and Table
S10).
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mRNAs coding for N remained as the predominant species at later time points with nota-
ble increases at the expression level of upstream genes (Fig. S7A and Table S6).

Quality of HBEC-derived ribo-seq libraries was assessed as follows. First, RNA integ-
rity was high despite widespread infection at 96 hpi (Fig. S8A [https://doi.org/10.5281/
zenodo.6382957]). Second, length distribution of ribo-seq reads mapping to cellular
and viral mRNAs matched the size expected from ribosome-protected fragments (Fig.
S8B [https://doi.org/10.5281/zenodo.6382957]). Third, reads mapping to the 39 UTRs
were depleted in ribo-seq libraries (Fig. S9A [https://doi.org/10.5281/zenodo.6382957]).
Fourth, ribo-seq libraries were enriched in fragments that align to the translated frame
and had a dominant frame with a 3-nucleotide (nt) periodicity across various read
lengths for both cellular and virally mapping reads (Fig. S9B and S10 [https://doi.org/
10.5281/zenodo.6382957]).

In contrast to Vero E6 cells, viral RNAs constituted only a small fraction of ribo-seq-
derived RNAs (Fig. 1G), suggesting a more restrictive translational environment overall for
SARS-CoV-2 in primary HBEC-ALI cultures. Viral RNAs bound by host ribosomes were read-
ily detected at 24, 48, and 72 hpi, but not at 4 hpi, with N and M ORFs being the most fre-
quently translated (Fig. 1H; Fig. S7B [https://doi.org/10.5281/zenodo.6382957]). Overall
translation efficiency of SARS-CoV-2 mRNAs was by and large proportional to the abun-
dance of sgRNAs and proceeded in a similar cascade in the primary HBECs as well as in the
Vero E6 cells. Due to the relatively low read coverage across ORF1ab, we did not further
assess frameshifting efficiency in this experimental setting.

We next tested whether SARS-CoV-2 can utilize alternative translation initiation,
which is increasingly recognized as a key posttranscriptional regulatory mechanism
(36, 37). To do so, ribo-seq experiments were performed in the presence of harringto-
nine, which results in the accumulation of ribosomes at translation initiation sites. In
addition to enrichment of ribosomes at the canonical start codons, harringtonine treat-
ment resulted in accumulation of ribosomes at possible alternative translation initia-
tion sites during the course of infection, albeit at generally lower frequencies. For
example, at 6 hpi, an internal noncanonical start codon, UUG, within ORF M was uti-
lized ;30% of the time and is predicted to result in an out-of-frame peptide of 53
amino acids (Tables S3 and S7 [https://doi.org/10.5281/zenodo.6382957]). An alterna-
tive translation initiation codon, AGG, at nt 21868 appeared to be utilized within S at 6,
12 and 24 hpi, which would result in a short (18-amino-acid) peptide (Tables S3 and
S7). Finally alternative translation initiation sites were observed within M, resulting in
an out-of-frame peptide and a truncated version of M (Tables S3 and S7).

Inflammatory and innate immune mRNAs are inefficiently translated in SARS-
CoV-2-infected cells. Parallel analysis of ribo-seq and RNA-seq data sets provides a
powerful tool to analyze translational level changes in response to SARS-CoV-2 infection.
Paired RNA-seq and ribo-seq data obtained from three independent experiments were an-
alyzed for differential gene expression patterns in Vero E6 cells. Principal-component analy-
sis (PCA) showed that despite a degree of variation between replicates (likely due to the
difficulty of synchronizing infections in the highly permissive Vero E6 cells), infected sam-
ples at later time points in infection clustered together (Fig. S11A [https://doi.org/10.5281/
zenodo.6382957]) and that the biological coefficient of variation was within an acceptable
range to detect significant changes in gene expression (Fig. S11B and C [https://doi.org/10
.5281/zenodo.6382957]).

Hierarchical consensus clustering of the 1,018 differentially expressed genes (DEGs)
(jlog fold change [FC]j . 2 and false discovery rate [FDR] , 0.05) from RNA-seq gener-
ated 5 temporally resolved clusters (Fig. 2A; Fig. S12A and Table S8 [https://doi.org/10
.5281/zenodo.6382957]). As early as 2 hpi, we found transcriptional upregulation of
transcription factors involved in cell cycle regulation and induction of inflammation
(i.e.NR4A3 and EGR3) (Fig. 2A; Fig. S13A and Table S8 [https://doi.org/10.5281/zenodo
.6382957]). Numerous chemokine ligands (CXCL1, CXCL3, CXCL11, cluster 1) as well as
IFN-a/b signaling and downstream ISGs significantly increased at 6 and 12 hpi (cluster
3) (Fig. 2A; Fig. S12A and S13A and Table S8). Induction of inflammatory and innate
immune pathways was confirmed by gene set enrichment analysis (GSEA) of genes at
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FIG 2 SARS-CoV-2 infection induces translational repression of innate immune genes. Vero E6 cells infected at 2 PFU/cell as
detailed in Fig. 1 were analyzed for differential expression of host genes by RNA-seq (A and B) and ribo-seq (C and D). (A and C)

(Continued on next page)
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each time point (Fig. 2B; Table S8). Another cluster (cluster 2) of upregulated genes
was composed of genes involved in mRNA processing and mRNA translation (Fig. 2A
and B; Table S8). Though numerous genes in clusters 4 and 5 were downregulated in
all replicate experiments, we did not observe the specific enrichment of a pathway in
this set of DEGs.

Remarkably, the majority of these transcript level changes were not apparent in the
ribo-seq data (Fig. 2C and D; Fig. S12B and S13B and Table S9 [https://doi.org/10.5281/
zenodo.6382957]). Only 234 genes were found to be differentially regulated in
response to SARS-CoV-2 infection, forming 10 temporally resolved clusters (Fig. 2C; Fig.
S12B and Table S9). Many of these clusters were smaller and the degree of differential
expression varied in clusters 7 to 10 between replicate experiments (Fig. 2C; Fig. S12B
and Table S9). Notwithstanding, cluster 2, which was enriched for type I IFN response
and virus defense pathways, was substantially smaller and consisted of only a few ISGs
(i.e., IFIT1, IFIT2, IFIT3, and CXCL10) (Fig. 2C and D; Fig. S12B and S13B and Table S9).
Few other immune regulators, such as EGR1, interleukin 11 (IL-11), and CXCL11, were
present in cluster 1 due to their temporal expression pattern, though innate immune
pathways were not as prominently enriched in this cluster (Fig. 2C and D; Fig. S12B
and S13B and Table S9). In contrast, we found that another innate immune modulator,
IL-11, was significantly upregulated translationally but not transcriptionally at 2 hpi
(Fig. S13B and Table S9). Clusters 3 and 4 consisted of genes that were downregulated
significantly but were not enriched for a particular pathway (Table S9). Together, these
findings suggest that immune response genes are translationally repressed and their
expression is significantly delayed in infected cells.

Many of these findings were consistent for the RNA-seq and ribo-seq experiments
performed on Vero E6 cells infected at a low MOI (Tables S10 and S11 [https://doi.org/
10.5281/zenodo.6382957]). For example, transcription factors ATF3 and EGR1, key reg-
ulators of inflammatory responses, were upregulated at 24 hpi along with numerous
chemokine ligands (i.e., CXCL1, CXCL8, and CXCL10) and interleukin 6 (Fig. S14A and
Table S11 [https://doi.org/10.5281/zenodo.6382957]). We also noted the upregulation
of numerous ISGs (i.e., IFIT1, IFIT2, IFIT3) as well as IFN-l at 24 hpi (Fig. S14A and Table
S11). The 48-hpi time point was marked by upregulation of genes involved in cell cycle
regulation and apoptosis (i.e., FOS and NR4A3), as well as genes for inflammatory cyto-
kines such as IL-31 and ISGs, including OASL (Fig. S14B and Table S11 [https://doi.org/
10.5281/zenodo.6382957]). In line with our above observations, the great majority of
the transcriptionally upregulated genes were not translationally upregulated at 24 hpi
(Fig. S14B and Table S11) and 48 hpi (Fig. S14B and Table S11). The IL-11 and IL-1A
genes stood out as immune-related genes that were translationally upregulated at 24
and 48 hpi, respectively (Fig. S14B and Table S11).

Paired RNA-seq and ribo-seq data obtained from four independent infections of HBEC-
ALI cultures (from two independent donors) were analyzed for differential gene expression
similarly. PCA showed that samples separated well based on time postinfection as well as
donor (Fig. S15A [https://doi.org/10.5281/zenodo.6382957]). Furthermore, the degree of
gene-level biological variability was within a reasonable range for both RNA-seq and ribo-
seq libraries (Fig. S15B and C [https://doi.org/10.5281/zenodo.6382957]). SARS-CoV-2 infec-
tion induced differential expression of 2,727 and 1,208 genes in RNA-seq and ribo-seq
experiments, respectively (Tables S12 and S13 [https://doi.org/10.5281/zenodo.6382957]).
As expected from the low level of infection at 4 hpi, relatively few genes were differentially
regulated at this time point for both RNA-seq and ribo-seq data sets (Tables S12 and S13).
Transcriptionally upregulated genes formed six temporally resolved clusters (Fig. 3A;
Fig. S16A and S17A and Table S12 [https://doi.org/10.5281/zenodo.6382957]). Cluster 2,

FIG 2 Legend (Continued)
Hierarchical clustering of DEGs after infection. Genes were filtered for an absolute log2 fold change of .2 and an adjusted q value
of ,0.05 at any time point. (B and D) Hypergeometric enrichment analysis from Hallmark and Gene Ontology databases for each
individual cluster in 2A and 2C. Color represents significance (q value); size indicates the percentage of the cluster represented in
the pathway. (See Tables S11 and S12.)
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FIG 3 SARS-CoV-2-induced changes in primary airway cells. Primary human bronchial epithelial cells grown at an air-liquid interface were
infected at 1 PFU/cell as detailed in Materials and Methods were analyzed for differential expression of host genes by RNA-seq (A and B)

(Continued on next page)
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which contained the largest number of upregulated DEGs, was significantly enriched in
genes in the type I/III IFN pathway and inflammatory responses (Fig. 3B; Table S12).
Clusters 4 and 5 were composed of genes that were downregulated at later stages of infec-
tion (Fig. 3A; Fig. S16A and S17A and Table S12).

GSEA revealed that many of these genes are involved in cilium organization and
movement (Fig. 3B; Table S12), demonstrating the impact of SARS-CoV-2-induced
remodeling and/or killing of the ciliated cells in the airway cultures. In contrast to Vero
E6 cells, the majority of these patterns were maintained in ribo-seq experiments. The
1,208 DEGs derived from the ribo-seq experiments formed 5 clusters, with clusters 1 to
3 consisting of translationally upregulated genes (Fig. 3C; Fig. S16B and S17B and
Table S13 [https://doi.org/10.5281/zenodo.6382957]). While clusters 1 and 3 were not
enriched in genes in a specific pathway, we found that cluster 2 was significantly
enriched in genes in the IFN and inflammatory response pathways (Fig. 3D; Table S13).
Similar to RNA-seq data, GSEA of downregulated DEGs in cluster 5 revealed enrichment
of genes involved in cilium organization and motility (Fig. 3D; Table S13). Overall, there
was a relatively low degree of overlap between differentially expressed genes (both
RNA-seq and ribo-seq) in Vero E6 and primary HBEC models of SARS-CoV-2 infection
(Fig. S18A and B [https://doi.org/10.5281/zenodo.6382957]). However, a number of
genes involved in antiviral defense, inflammatory response, and IFN pathways (i.e.,
CXCL10, CXCL11, IFIT1, etc.) were commonly upregulated in infected Vero E6 cells and
HBECs at later stages of infection.

Comparison of SARS-CoV-2 and host mRNA translation efficiencies. We next
compared the translational efficiency of cellular host response genes in Vero E6 and
primary HBEC cultures. In Vero E6 cells, the translation efficiency of various immune
modulatory genes was substantially lower than that of other cellular mRNAs, most evi-
dent at 12 and 24 hpi, which marks the accumulation of viral proteins (Fig. 4A to D;
Table S14 [https://doi.org/10.5281/zenodo.6382957]). In contrast, in HBEC-ALI cultures,
the translation efficiency of mRNAs encoding ISGs and inflammatory genes did not
appear to be significantly lower than that of other cellular mRNAs (Fig. 4E to H; Table
S15 [https://doi.org/10.5281/zenodo.6382957]). Notable exceptions included CXCL9
and IFN-B, which were substantially upregulated at 48 hpi at the transcript level but
had comparably lower translation efficiencies (Fig. 4F; Table S15).

Comparative analysis of translational efficiency (TE) changes for immune-related
genes in Vero E6 and primary HBECs revealed marked differences between the two
models of SARS-CoV-2 infection. For example, at early times in infection (i.e., 2 hpi for
Vero E6 cells and 24 hpi for HBECs), translation efficiencies of selected innate immune
genes were high and correlated reasonably well between the two models (Fig. S19A
[https://doi.org/10.5281/zenodo.6382957]). However, as infection progressed, suppres-
sion of innate immune response genes was particularly evident in the Vero E6 cells
compared to primary HBECs (Fig. S19B to D [https://doi.org/10.5281/zenodo.6382957]).

Numerous viral proteins have been implied in modulation of type I IFN responses, and
we next tested the direct impact of some of these factors in suppression of ISG expression.
To this end, cells transfected with Nsp1, Nsp7, ORF3a, and ORF6 expression constructs
were stimulated with IFN-a, and induction of ISGs was assessed by immunoblotting and
reverse transcription-quantitative PCR (RT-qPCR). We found that Nsp1 overexpression sig-
nificantly reduced IFN-a-mediated phosphorylation of STAT1 (Fig. 5A), whereas other viral
proteins had no impact on STAT1 levels or phosphorylation. Nsp1-mediated suppression
of STAT1 phosphorylation was accompanied by a significant reduction of ISG upregulation
at both the protein and RNA levels (Fig. 5A to C). While ORF3a and ORF6 did not affect
STAT1 phosphorylation, they both reduced steady-state ISG expression (Fig. 5A), yet the

FIG 3 Legend (Continued)
and ribo-seq (C and D). (A and C) Hierarchical clustering of DEGs after infection. Genes were filtered for an absolute log2 fold change of .2
and an adjusted q value of ,0.05 at any time point. (B and D) Hypergeometric enrichment analysis from Hallmark and Gene Ontology
databases for each individual cluster in 3A and 3C. Color represents significance (q value); size indicates the percentage of the cluster
represented in the pathway (see Tables S15 and S16).
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FIG 4 SARS-CoV-2-induces translational repression of innate immune genes. Changes in the translational
efficiency of genes that were differentially transcribed in response to SARS-CoV-2 infection are shown for Vero
E6 cells (A to D) and HBECs (E to H) at the indicated time points postinfection (see Tables S17 and S18).
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impact on ISG protein levels was relatively modest (Fig. 5B). In line with other published
studies (38, 39), these findings suggested that the observed translational repression of
innate immune modulators in SARS-CoV-2-infected cells is likely due to the actions of mul-
tiple viral proteins and possibly due to virus-induced changes and stress in heavily infected
cells.

DISCUSSION

Here, we utilized ribosome profiling (ribo-seq) coupled with RNA-seq to study the
translational events that regulate viral gene expression and host responses over multiple
time points after SARS-CoV-2 infection in different cell culture models. SARS-CoV-2 replicates
rapidly, with viral RNAs constituting the great majority of the total mRNA pool soon after
infection. Our data show that viral mRNA abundance is the main determinant of efficient vi-
ral mRNA translation and that SARS-CoV-2 mRNAs sequester ribosomes from the translating
pool by competition, simply outnumbering the host counterparts. This observation

FIG 5 SARS-CoV-2 proteins block the type I IFN response at different stages. HEK293T cells were transfected with NSP1, NSP7, ORF3a, and ORF6 expression
plasmids and treated with 1,000 U of IFN-a. Cells were analyzed for ISG induction by immunoblotting (A and B) and RT-qPCR (C). Data are derived from
two independent experiments. Data in B, C show the mean and error bars represent the standard error.
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notwithstanding, certain viral mRNAs (i.e., those encoding S, E, and ORF1ab) were translated
modestly more efficiently than others. While the overall conclusions are similar, another
study found that ORF1ab was less efficiently translated than other viral mRNAs (20), which
we ascribe to possible differences in read depth (with our study having higher read depth
within ORF1ab), RNA-seq approaches, infection conditions, and cell types.

We observed that SARS-CoV-2 employs a highly efficient frameshifting strategy to facili-
tate virus replication. In line with the model that ribosomes pause at the slippery sequence
upon encountering the pseudoknot (40, 41) and recent structural studies of the ribosome-
bound SARS-CoV-2 frameshifting element (42), we observed a local increase in ribosome
density overlapping the slippery sequence for SARS-CoV-2 (Fig. 1D; Table S3). Nevertheless,
ribosome density downstream of the frameshifting site within the SARS-CoV-2 ORF1b was
high, with ribosomes continuing into the ORF1b frame.50% of the time. In addition to the
sequence-specific differences within the slippery site between SARS-CoV-2 and other viruses
that utilize frameshifting (43), structures downstream of the slippery sequence or alternative
structural conformations of the FSE may underlie the high efficiency of SARS-CoV-2 frame-
shifting (22, 29).

In addition, antiviral host proteins can also affect viral mRNA translation and frame-
shifting. For example, an ISG product, known as C19orf66 (Shiftless), has been demon-
strated to impair HIV-1 and Japanese encephalitic virus replication through inhibition
of PRF (44, 45) and dengue virus replication through inhibition of viral translation (46).
Furthermore, C19orf66 associates with host ribosomes, and it can inhibit PRF of differ-
ent coronaviruses, including SARS-CoV-2 in vitro (47), and has been found to associate
with SARS-CoV-2 RNAs in cells (48). Of note, we found that C19orf66 was upregulated
approximately 5-fold at both the transcript and protein levels in HBECs, but not in Vero
E6 cells (Fig. S20 [https://doi.org/10.5281/zenodo.6382957]), which may contribute to
the overall more restrictive state of viral translation in the HBEC model.

Our study provides an in-depth picture of how host cell responses to SARS-CoV-2
are regulated at the transcriptional and posttranscriptional levels. In the highly permis-
sive Vero E6 cells, we observed upregulation of proinflammatory chemokines as early
as 6 hpi followed by a more delayed induction of ISGs, a finding in line with previous
observations in immortalized lung cell line models of SARS-CoV-2 (4, 13, 19). However,
the great majority of the innate immune response genes appeared to be translated at
a low efficiency (Fig. 2A to D; Table S14), a finding also in line with other ribo-seq stud-
ies conducted on SARS-CoV-2-infected Calu-3 lung cells (13, 19). Apart from this spe-
cific effect on innate immune genes, we did not observe a global decrease in host
mRNA translation per se, and most cellular mRNAs were translated proportionally to
their mRNA abundance.

Translational repression of innate immune genes was less apparent in the complex
setting of primary HBECs grown at the ALI, though several chemokine ligands and IFN-b
tended to be less efficiently translated (Fig. 4E to H; Table S15). The potential factors
that underlie these differences between Vero E6 cells and HBEC-ALI cultures are mani-
fold. First, Vero E6 cells, as well as other cell line models broadly used in the field, over-
express ACE2 and are unusually permissive to infection, allowing quick accumulation
of viral proteins with established effects on host mRNA degradation and translation.
Second, the majority of published models for SARS-CoV-2 infection utilized cancer-
derived cell lines (i.e., Calu-3, A549, Caco-2, and Huh7), which often lack key arms of
innate immunity. In fact, it is apparent in the HBEC-ALI model that viral translation, and
therefore accumulation of viral proteins, may overall be more restricted than in the
highly permissive Vero E6 cells. Third, the HBEC-ALI model is composed of basal, club,
and BC/club cells that do not express/express low levels of ACE2 and hence are not as
efficiently infected by SARS-CoV-2 (though there is some evidence that SARS-CoV-2
can be detected in these cells at later stages of SARS-CoV-2 replication [49]). Thus, it is
possible that the observed upregulation of inflammatory and innate immune genes
takes place in the uninfected bystander cells that do not express viral proteins, a find-
ing consistent with recent small cytoplasmic RNA sequencing (scRNA-seq) studies (49).
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Although some of these differences can in principle be circumvented by conducting
HBEC infections at a higher MOI, the effective MOI is much lower in the HBECs, as is
the case in most primary cell culture models for a broad number of viral pathogens.
Furthermore, it is difficult to gauge the effective MOI in HBECs, as susceptibility to
SARS-CoV-2 varies from donor to donor, the ALI interface limits the amount of virus
inoculum that can be used (as ciliated cells need to remain in contact with air), and the
natural production of mucus limits viral spread.

The apparently low translation efficiency of mRNAs involved in antiviral defenses in Vero
E6 cells may be mediated by the SARS-CoV-2 protein NSP1, which associates tightly with
ribosomes to prevent binding of capped mRNA and thus inhibit the formation of the trans-
lation initiation complex (7–10, 50). Given the high abundance of ribosomes in the cell,
whether physiologically relevant concentrations of NSP1 are sufficient to induce a global
block in mRNA translation is unclear. For example, even in cells overexpressing NSP1, we
found no evidence of a translational block to ISG expression (Fig. 5). Rather, NSP1 expression
blocked STAT1 phosphorylation and subsequently reduced transcriptional induction of ISGs.
SARS-CoV-2 encodes numerous nonstructural and accessory proteins, some with functions
in antagonism of IFN responses through inhibition of IFN production and IFN signaling in
infected cells. For example NSP6, NSP13, ORF3a, M, N, ORF6, ORF7a, ORF7b, and ORF8 in-
hibit IFN signaling (3, 38, 39, 51–55), whereas NSP1, NSP5, NSP6, NSP15, ORF6, and ORF7b
can block the production of IFN-b (54–56). Thus, the observed translational repression of
ISGs in the heavily infected Vero E6 cells is likely due to a complex interplay between viral
mRNAs dominating the cellular mRNA pool, viral accessory proteins such as NSP1, and pos-
sibly reduced translation initiation due to cellular stress induced by SARS-CoV-2. Finally, we
cannot rule out the possibility that the translational suppression of innate immune genes is
also contributed to by the host’s attempt to curb viral replication, including upregulated
expression of members of the IFIT family with known functions in translation inhibition (57–
61). Future studies are warranted to empirically test these possibilities and define the mech-
anism of apparent innate immune suppression.

It is well documented that SARS-CoV-2 can induce degradation of host mRNAs (13,
62) and inhibit nuclear export of cellular mRNAs (13, 63), which may explain the high
abundance of the viral mRNAs as shown in Fig. 1B. Our analyses focused solely on the
relative translation efficiency of cytosolic viral and host mRNAs (i.e., translation per
mRNA molecule) but did not factor in the absolute abundance of host mRNAs or abso-
lute protein abundance, which may introduce certain biases in analyses and is a limita-
tion of our approach (64, 65).

Taken together, our results provide novel insights into and a rich resource on how
translational regulation shapes SARS-CoV-2 replication and host responses. While
COVID-19 pathogenesis is in part due to virus-induced destruction of infected cells, ele-
vated production of inflammatory mediators and the virus-induced immunopathology
are thought to play a big role in SARS-CoV-2-induced lung injury (66, 67). Our findings
suggest that immune responses in actively infected cells may be dampened or delayed
for SARS-CoV-2 to efficiently replicate and release viral progeny. As such, it is possible
that the elevated levels of inflammatory mediators in vivo are due to bystander cells or
infection of immune cell subsets, such as monocytes and macrophages, that are less
permissive to SARS-CoV-2 but can sense and respond to infection by secretion of
immune modulatory molecules (68). Altogether, our study provides an in-depth picture
of translationally regulated events in SARS-CoV-2 replication and reveals that impair-
ment of host mRNA translation may allow SARS-CoV-2 to evade host immunity.
Modulation of viral RNA structures and proteins that regulate mRNA translation will
provide a unique avenue for therapeutic development.

MATERIALS ANDMETHODS
Chemicals and reagents. Standard laboratory chemicals were obtained from reputable suppliers

such as Sigma-Aldrich. Cycloheximide (CHX) was obtained from Sigma, dissolved in ethanol and stored
at 220°C. Harringtonine (HT) was purchased from LKT Laboratories, Inc., resuspended in dimethyl
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sulfoxide (DMSO), and stored in aliquots of 2 mg/mL at 220°C. IFN-a was purchased from PBL Assay
Sciences and stored at280°C per the manufacturer’s instructions.

Plasmids and viruses. Mammalian expression plasmids encoding SARS-CoV-2 genes (NSP1, NSP7,
ORF3a, and ORF6) were obtained from BEI Resources and propagated as recommended. SARS-CoV-2 strain
2019-nCoV/USA-WA1/2020 was obtained from Centers for Disease Control and Prevention (a gift from
Natalie Thornburg), and SARS-CoV-2 Neon-green (SARS-CoV-2-NG) reporter virus has been described before
(69). SARS-CoV-2 was propagated in Vero CCL-81 cells (ATCC-CCL-81) or its derivative engineered to stably
express human TMPRSS2 (obtained from the Whelan lab [70]) to minimize accumulation of spike mutations.
For virus propagation, cells were infected at an MOI of 0.01 in Dulbecco’s modified Eagle medium (DMEM;
Sigma) supplemented with 2% fetal bovine serum (FBS; VWR) and 10 mM HEPES buffer (Corning), and cell
culture supernatants were collected after visible cytotoxicity was reached, at ;3 days postinfection. Virus
stock titers were determined on Vero E6 cells (ATCC-CRL-1586) by plaque assays and sequenced to confirm
identity to the reference sequence.

Cells and infections. All cell lines were maintained in a humidified incubator at 37°C with 5% CO2

unless otherwise indicated. HEK293T cells (ATCC CRL-11268) were cultured in Dulbecco’s modified Eagle
medium supplemented with 10% fetal bovine serum. HEK293T cells grown in 24-well dishes were trans-
fected with mammalian expression plasmids encoding SARS-CoV-2 genes (NSP1, NSP7, ORF3a, and
ORF6) using polyethyleneimine (PolySciences, Warrington, PA).

Vero and Vero E6 cells (and derivatives thereof) were cultured in DMEM supplemented with 10% FBS
and 10 mM HEPES (pH 7.4). For RNA-seq and ribo-seq experiments, Vero E6 cells grown in 6-well culture
dishes were inoculated with SARS-CoV-2 strain 2019-nCoV/USA-WA1/2020 in DMEM supplemented with
2% FBS for an hour in a humidified incubator at 37°C, after which the initial inoculum was removed and
replaced with cell culture medium.

Primary human bronchial epithelial cells (HBECs) grown at an air-liquid interface (ALI) were proc-
essed as follows. Human airway epithelial cells were isolated from surgical excess of tracheobronchial
segments of lungs donated for transplantation as previously described and were exempt from regula-
tion by U.S. Department of Health and Human Services regulation 45, Code of Federal Regulations, Part
46 (71). Tracheobronchial cells were expanded in culture, seeded on supported membranes (Transwell;
Corning, Inc.), and differentiated using ALI conditions as detailed before using 24-well inserts (72, 73).
Prior to infection, HBECs were washed two or three times with 1� phosphate-buffered saline (PBS) to
remove the mucous layer, which otherwise can slow down infection. For ribo-seq/RNA-seq experiments,
HBECs were inoculated with SARS-CoV-2 strain 2019-nCoV/USA-WA1/2020 as described above in DMEM
supplemented with 2% FBS for 2 h in a humidified incubator at 37°C, after which the initial inoculum
was removed. Cells were washed with 1� PBS to remove the virus inoculum and maintained at the ALI
for the duration of the assays. For monitoring virus spread in HBECs, cells were infected with the SARS-
CoV-2-NG reporter virus similarly and imaged by epifluorescence microscopy in a biosafety level 3
(BSL3) setting at time intervals indicated in the figure legends. In other experiments, HBECs infected
with 2019-nCoV/USA-WA1/2020 were fixed and subjected to RNA in situ hybridization as detailed below.

Immunofluorescence. Infected Vero E6 cells and HBECs were fixed with 4% paraformaldehyde for
20 min at room temperature, followed by permeabilization using 0.5% Tween 20 in PBS for 10 min. Cells
were blocked with 1% bovine serum albumin (BSA) and 10% FBS in 0.1% PBS–Tween 20 (PBST) for 1 h prior
to staining with a rabbit polyclonal anti-SARS-CoV-2 nucleocapsid antibody (Sino Biological, Inc., catalog
no.40588-T62) diluted 1:500 and incubated overnight at 4°C. The following day, cells were stained with an
Alexa Fluor 488-conjugated goat anti-rabbit secondary antibody (Invitrogen) at a 1:1,000 dilution, counter-
stained with DAPI (49,6-diamidino-2-phenylindole), and imaged by immunofluorescence microscopy.

RNA in situ hybridization. Primary human airway epithelial cells were fully differentiated at air-liquid
interface on supported plastic membranes (Transwell; Corning) as detailed above. Cells were fixed by immer-
sion of the Transwell membrane in methanol-acetone (50%:50% [by volume]) at 220°C for 20 min followed
by 4% paraformaldehyde at room temperature for 15 min. Cells were washed three times with 1� PBS and
stored at 4°C. Prior to probing for vRNA, membranes containing cells were cut from plastic supports, divided
into 4 pieces, and placed in a fresh 48-well plate. RNA detection was performed using the manufacturer’s pro-
tocol for RNAscope fluorescent in situ hybridization (RNAscope multiplex fluorescent assay kit, v2; Advanced
Cell Diagnostics). Briefly, cells on membranes were treated with 3% hydrogen peroxide for 10 min at room
temperature, washed with distilled water, treated with protease III solution, and diluted 1:15 in 1� PBS for
10 min in a humidified hybridization oven at 40°C. The cells were then washed with PBS and incubated for 2 h
at 40°C with manufacturer-designed antisense probes specific for the SARS-CoV-2 positive-strand S gene
encoding the spike protein (RNAscope Probe-V-nCoV2019-S; catalog no. 848561) or ORF1ab (RNAscope Probe-
V-nCoV2019-orf1ab-O2-sense-C2; catalog no. 854851-C2). The probes were visualized according to the manu-
facturers’ instructions by incubation with RNAscope amplifiers, horseradish peroxidase, and fluorescent label
(Opal fluorophores; Perkin-Elmer). Membranes were mounted on glass slides using anti-fade medium contain-
ing DAPI (Fluoroshield; Sigma-Aldrich). Images were obtained using a 5000B Leica microscope equipped with
a charge-coupled device camera (Retiga 200R) interfaced with QCapture Pro software (Q Imaging).

Ribosome profiling. Ribosome profiling (ribo-seq) was performed as described before with the fol-
lowing modifications (30, 31). Mock-, HIV-1-, and SARS-CoV-2-infected cells were treated with complete
cell culture medium supplemented with 0.1 mg/mL CHX for 1 min at room temperature followed by one
round of washing in ice-cold PBS supplemented with 0.1 mg/mL CHX. Cells were lysed in 1�mammalian
polysome lysis buffer (20 mM Tris HCl [pH 7.4], 150 mM NaCl, 5 mM MgCl2, 1% Triton X-100, 0.1% NP-40,
1 mM dithiothreitol [DTT], 10 U of DNase I, with 0.1 mg/mL CHX). The cells were then triturated by
repeated pipetting and incubated with lysis buffer for at least 20 min to ensure virus inactivation.
Lysates were centrifuged for 10 min at $20,000 � g at 4°C for clarification. The supernatants were split
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into multiple aliquots, with SDS added to one aliquot to a final concentration of 1% for downstream
RNA-seq sample preparation, and flash frozen in a 70% ethanol-dry ice bath or directly placed at 280°C.
RNA extracted from lysates were subjected to Bioanalyzer RNA-Nano analysis. An RNA integrity number
(RIN) of 8 and above (maximum RIN = 10) is considered to indicate intact RNA. Lysates were treated with
RNase I (5 U/OD260 unit), and ribosome-protected fragments were isolated via centrifugation through
Microspin S-400 HR columns (GE Healthcare) and purified using the RNA Clean and Concentrator kit
(Zymo Research). Recovered ribosome-bound fragments (RBFs) were then subjected to rRNA depletion
using RiboZero beads from the TruSeq Gold stranded total RNA library preparation kit (Illumina) and
purified using a Zymo RNA Clean and Concentrator kit. Fragments were then end-labeled with [g-32P]
ATP using T4 polynucleotide kinase (New England Biolabs [NEB]), separated on 15% Tris-borate-EDTA
(TBE)–urea gels, and visualized by autoradiography. RNA fragments of ;30 nt were excised from the
gels and purified as detailed before in 400 mL of 0.4 M NaCl supplemented with 4 mL SUPERaseIN
(Thermo Fisher). 39 and 59 adapters were sequentially ligated as in a previously described protocol (74,
75), reverse transcribed, and PCR amplified. We acknowledge that our ligation-based library generation
protocol may introduce biases toward inserts containing distinct nucleotides at the 59 and 39 ends.
Indeed, we found a modest preference toward Us and Cs in the first position and Gs and Cs in the last
position of inserts. Libraries were then sequenced on HiSeq-2000 or NextSeq 500 platforms (Illumina) at
the Genome Technology Access Center or the Edison Family Center for Genome Sciences & Systems
Biology, respectively, at Washington University School of Medicine.

RNA-seq. An aliquot of cell lysates harvested from ribo-seq experiments above was processed in parallel
for RNA-seq using a TruSeq stranded mRNA library preparation kit (Illumina) following extraction using a Zymo
RNA Clean and Concentrator (5) kit. RNA-seq libraries were constructed using TruSeq RNA single-index adapt-
ers and deep sequenced as described above at Washington University in St. Louis, MO.

Data analysis. All of the data analysis pipelines used in this study are available at https://github
.com/kutluaylab/SARS-2_COVID. Below we detail the salient steps of data analyses.

(i) Mapping. RNA-seq and ribo-seq data sets were analyzed by publicly available software and cus-
tom scripts. In brief, for ribo-seq, reads were separated based on unique barcodes and the adapters
trimmed using BBDuk (http://jgi.doe.gov/data-and-tools/bb-tools/). The resulting reads were first
mapped to rRNA to remove any rRNA-derived reads not completely removed by depletion kits during
library generation. Reads were then sequentially mapped to the SARS-CoV-2 and host genomes. In brief,
Bowtie aligner (76) was used for viral genome/transcriptome mapping (mapping criteria: -v 1, -m 10),
and STAR aligner (77) was used for mapping (mapping criteria outFilterMismatchNoverLmax 0.04,
outSAMstrandField intronMotif, outSAMattributes All, quantMode TranscriptomeSAM) of reads to the
African green monkey (AGM) (Chlorocebus sabaeus) or human genome (hg19). For ribo-seq reads that
map to the SARS-CoV-2 genome, reads were additionally collapsed to minimize PCR overamplification
artifacts with the aid of UMI barcodes. For AGM/human alignments, mapped reads were annotated
using the featureCounts package (78) and GTF annotation files freely available from NCBI and Ensembl.

(ii) Read length distributions. Ribo-seq read length distributions were generated from cellular tran-
scriptome alignment and viral sorted alignment BAM files. Unmapped alignments were discarded with
SAMtools (79), and the number of aligned reads of each length was counted and plotted.

(iii) Genomic region counts. The 59 UTR, CDS, and 39 UTR region counts were generated for each
sample as follows. The counts of mock-infected and infected samples, separated by time point, were
used as input. Protein coding genes were filtered such that they have .1 count per million (CPM) in at
least half of the ribo-seq samples and half of the RNA-seq samples. Annotations of 59 UTRs, CDS, and 39
UTRs of these filtered genes were retrieved, and repetitive low-complexity elements were removed. The
aligned BAM files were recounted using the regional annotation files with featureCounts with the follow-
ing parameters: -t CDS/UTR5/UTR3 -g gene_id –fracOverlap 1 –minOverlap 1.

(iv) PCA. For the PCA, the ribo-seq and RNA-seq counts were first filtered by the filterByExpr function
from the edgeR R package (80). In the normalization step, library sizes were adjusted using the trimmed-
mean-of-M-values method as implemented in the calcNormFactors function, and read counts were converted
to CPM. In a second filtering step, genes with more than 1 CPM in all samples were selected, and the filtered
CPM values were log10 transformed. PCA was performed with the prcomp R function with data centering.

(v) P-site and alternative TIS analysis. The R package riboWaltz (81) and the Ribo-TISH package (82)
were utilized to determine the location of ribosomal P sites with respect to the 59 and 39 end of reads, as
well as to illustrate triplet periodicity and determine the percentage of reads within each frame in the CDS
and UTR. Transcriptome alignment BAM, sorted alignment BAM, and corresponding cellular and viral annota-
tions were used as input. An additional parameter used in the Ribo-TISH quality function was –th 0.4.

Alternative TIS sites in both host and viral reads were found using the Ribo-TISH package (82). For vi-
ral TIS, analysis was carried out in the “predict” mode comparing samples mock-treated or treated with
harringtonine at each time point (with replicates). This was replicated for host analysis, although with
the additional step of analysis in the “diff” mode to predict TIS differentially regulated between infected
and uninfected cells.

(vi) Differential gene expression analysis. Differential gene expression analysis was carried out
using the edgeR package (80) with read counts produced by featureCounts as described in the mapping
section. Considering that virally derived sequences quickly dominated the host mRNA pool, for differen-
tial gene expression of host mRNAs, library sizes were normalized relative to reads that mapped only to
host mRNAs. Library sizes were adjusted using the trimmed-mean-of-M-values method as implemented
in the calcNormFactors function. Genes with .1 CPM in at least half of the samples were selected for
the analysis. Common, trended, and tagwise dispersion was estimated with the estimateDisp function
(robust = T). Genewise coefficient of variation was plotted against log2 CPM using the plotBCV function.
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Differential gene expression analysis was then performed with the exactTest function. Pairwise compari-
son was conducted between mock samples and infected samples at different time points. Resultant
gene-wise log fold change (log FC), P value, and FDR were utilized in subsequent analyses.

(vii) TE analysis. The calculation of translational efficiency involved normalizing counts to account
for library size in edgeR to generate log2 CPM estimates for each gene in ribo-seq and RNA-seq and sub-
tracting log2 CPM in RNA-seq from log2 CPM in ribo-seq to provide an estimate of the difference in
expression level between ribo-seq and RNA-seq for a given gene (the TE value). Mean mock TE was sub-
tracted from mean infected TE to calculate DTE.

(viii) Clustered time course expression analysis. Clustered time course expression analysis, cluster
profile plots, and gene set overrepresentation analysis were adapted from the work of Puray-Chavez et
al. (83). Heat maps were generated with the ComplexHeatmap R package (84). In brief, for RNA-seq and
ribo-seq experiments with HBEC and Vero cells, count data were filtered for genes with an FDR of ,0.05
and a jlog FCj of .1 in at least one time point in the DE analysis. RNA-seq and ribo-seq log CPM values
of each time point were each converted to per-gene z-scores. Consensus clustering was performed with
the ConsensusClusteringPlus R package (85) using the following nondefault parameters: maxK = 13,
reps = 100, innerLinkage = “complete,” and finalLinkage = “ward.D2.” Cluster merging and reordering
were conducted based on manual inspection. Clusters with immune response pathways as determined
by the overrepresentation analysis were labeled on the heat map, along with relevant ISGs. Log FC of
differentially expressed genes from DE analysis were plotted across the time course grouped by clusters,
along with mean log FC of each time point.

(ix) Gene set enrichment analysis. Overrepresentation of gene sets in each cluster was analyzed using
the enricher function of the clusterProfiler R package (86). Gene sets were retrieved from the Molecular
Signature Database with the msigdbr R package, including “Hallmark” and “GO:BP” (87–90). Gene sets were
considered significantly overrepresented if adjusted P values (q values) were below 0.1 and were selected man-
ually for plotting.

Viral counts. Viral read density plots were generated using the SAM file from viral genome alignment.
The SAMtools (79) package was used to create an mpileup file containing information about the read density,
strandedness, mapping quality, and nucleotide identity at each position. Custom scripts (deposited at GitHub
under kutluaylab) then were utilized to create files providing only the nucleotide identity and number of
counts at each position for both sense and antisense reads. These were then visualized by scripts written in R.

As SARS-CoV-2 generates chimeric subgenomic mRNAs (sgRNAs) in addition to its genomic RNA (gRNA),
featureCounts could not be used to accurately estimate viral gene counts from RNA-seq due to the presence
of nested 39 sequences. Therefore, in order to visualize and enumerate such chimeric sequences, the Burrows-
Wheeler aligner (BWA) (91) was used in “mem” mode on viral RNA-seq reads. After this alignment was gener-
ated using the default parameters and the reference SARS-CoV-2 FASTA file mentioned above, chimeric reads
were isolated by searching for all reads containing the SA tag and the SARS-CoV-2 transcriptional regulatory
sequence (TRS) AAACGAAC. SARS-CoV-2 gRNAs were extracted by searching for all reads containing the first
15 to 20 bases of the ORF1A CDS, as these sequences would be present only in full-length SARS-CoV-2
genomes. This provided the sequences and alignment locations of the chimeric and genomic reads, which
were then visualized using R. For sgRNAs, the viral gene corresponding to each transcript was determined by
locating the CDS with the nearest downstream start site. These data, together with the number of gRNAs,
were used to calculate relative percentages of viral transcripts and, together with the total number of mapped
viral reads, allowed the tabulation of viral gene counts at each time point. For ribosome profiling data,
featureCounts was used to enumerate viral reads, as ribosomes translate only the first gene on each transcript,
and so footprints from nested 39 genes were low enough to be negligible.

Data availability. All ribo-seq and RNA-seq data were deposited in the GEO database under acces-
sion number GSE158930.
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