2,033 research outputs found

    Influence of an adsorbing polymer in the aging dynamics of Laponite clay suspensions

    Full text link
    Clay-polymer dispersions in aqueous solutions have attracted a great interest in recent years due to their industrial applications and intriguing physical properties. Aqueous solutions of bare Laponite particles are known to age spontaneously from an ergodic state to a non ergodic state in a time varying from hours to months depending on Laponite concentration. When a polymer species like Polyethylene Oxide (PEO) is added to the solution, it weakly adsorbs on clay particle surfaces modifying the effective interaction potential between Laponite particles. A dynamic light scattering study, varying polymer concentration at fixed polymer molecular weight (Mw=200.000 g/mol), has been performed in order to understand the effect of polymer on the aging dynamics of the system. The results obtained show that arresting phenomena between clay particles are hindered if PEO is added and consequently the aging dynamics slows down with increasing PEO concentration. This process is possibly due to the progressive coverage of the clay surface by polymers that grow with increasing PEO concentration and may lead to steric stabilization.Comment: 13 pages, 6 figures, manuscript accepted for publication on Philosophical Magazin

    More on phase diagram of Laponite

    Full text link
    The phase diagram of a charged colloidal system (Laponite) has been investigated by dynamic light scattering in a previously unexplored range of salt and clay concentrations. Specifically the clay weight and salt molar concentrations have been varied in the ranges Cw=0.004- 0.025, Cs=(1x 10^-3- 5x 10^-3) M respectively. As in the case of free salt water samples (Cs= 1x 10^-4 M) an aging dynamics towards two different arrested phases is found in the whole examined Cw and Cs range. Moreover a transition between these two different regimes is found for each investigated salt concentration. It is clear from these measurements that a revision of the phase diagram is necessary and a new "transition" line between two different arrested states is drawn.Comment: 16 pages, 5 figures, submitted to Langmui

    Routes to gelation in a clay suspension

    Full text link
    The gelation of water suspension of a synthetic clay (Laponite) has been studied by dynamic light scattering in a wide range of clay weight concentration (Cw = 0.003-0.031). At variance with previous determination, indicating a stable liquid phase for Cw < Cw*=0.015-0.018, we find that the gelation takes actually place in the whole examined Cw range. More importantly, we find that Cw* marks the transition between two different routes to gelation. We hypothesize that at low concentration Laponite suspension behaves as an attractive colloid and that the slowing down of the dynamics is attained by the formation of larger and larger clusters while at high concentration the basic units of the gel could be the Debye Huckel spheres associated to single Laponite plates.Comment: 5 pages, 4 figure

    Sterility in the male

    Get PDF

    Aging of the Nonlinear Optical Susceptibility of colloidal solutions

    Full text link
    Using Z-scan and dynamic light scattering measurements we investigate the nonlinear optics response of a colloidal solution undergoing dynamics slowing down with age. We study the high optical nonlinearity of an organic dye (Rhodamine B) dispersed in a water-clay (Laponite) solution, at different clay concentrations (2.0 wt% - 2.6 wt%), experiencing the gelation process. We determine the clay platelets self diffusion coefficient and, by its comparison with the structural relaxation time, we conclude that the gelation process proceeds through the structuring of interconnecting clay platelets network rather than through clusters growth and aggregation.Comment: 4 figures, 4 page

    Power dependence of pure spin current injection by quantum interference

    Get PDF
    We investigate the power dependence of pure spin current injection in GaAs bulk and quantum-well samples by a quantum interference and control technique. Spin separation is measured as a function of the relative strength of the two transition pathways driven by two laser pulses. By keeping the relaxation time of the current unchanged, we are able to relate the spin separation to the injected average velocity. We find that the average velocity is determined by the relative strength of the two transitions in the same way as in classical interference. Based on this, we conclude that the density of injected pure spin current increases monotonically with the excitation laser intensities. The experimental results are consistent with theoretical calculations based on Fermi's golden rule.Comment: 6 pages, 4 figure

    Competing interactions in arrested states of colloidal clays

    Full text link
    Using experiments, theory and simulations, we show that the arrested state observed in a colloidal clay at intermediate concentrations is stabilized by the screened Coulomb repulsion (Wigner glass). Dilution experiments allow us to distinguish this high-concentration disconnected state, which melts upon addition of water, from a low-concentration gel state, which does not melt. Theoretical modelling and simulations reproduce the measured Small Angle X-Ray Scattering static structure factors and confirm the long-range electrostatic nature of the arrested structure. These findings are attributed to the different timescales controlling the competing attractive and repulsive interactions.Comment: Accepted for publication in Physical Review Letter

    Arrested state of clay-water suspensions: gel or glass?

    Full text link
    The aging of a charged colloidal system has been studied by Small Angle X-rays Scattering, in the exchanged momentum range Q=0.03 - 5 nm-1, and by Dynamic Light Scattering, at different clay concentrations (Cw =0.6 % - 2.8 %). The static structure factor, S(Q), has been determined as a function of both aging time and concentration. This is the first direct experimental evidence of the existence and evolution with aging time of two different arrested states in a single system simply obtained only by changing its volume fraction: an inhomogeneous state is reached at low concentrations, while a homogenous one is found at high concentrations.Comment: 5 pages, 2 figure

    The Case against Mercury as the Angrite Parent Body (APB)

    Get PDF
    Angrites are not plausibly from Mercury based on their high FeO contents and ancient ages (e.g., [1]). Rather, the early crystallization ages of angrites argues for a small asteroidal-sized parent body for these meteorites (e.g., [2]). Despite this, recently it has been proposed that Mercury is the APB [3, 4, 5, 6]. Preserved corona and symplectite textures and the presence of 120 triple junctions in NWA 2999 have been cited as requiring a planetary origin [3, 4], with the symplectites in NWA 2999 resulting from rapid decompression during uplift via thrust faults on Mercury [4], and the coronas during subsequent cooling at low pressure. Glasses along grain boundaries and exsolution lamellae possibly indicative of rapid melting and cooling in NWA 4950 are cited as evidence of rapid decompression [6]. To explain the discrepancy between spectral observations of the Mercurian surface and the high FeO contents in angrites, an early (~4.5 Ga), collisionally-stripped FeO-rich basaltic surface has been suggested for Mercury [5, 6]
    • …
    corecore