32 research outputs found

    Functional characterization of two defensin isoforms of the hard tick Ixodes ricinus

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>The immune system of ticks is stimulated to produce many pharmacologically active molecules during feeding and especially during pathogen invasion. The family of cationic peptides - defensins - represents a specific group of antimicrobial compounds with six conserved cysteine residues in a molecule.</p> <p>Results</p> <p>Two isoforms of the defensin gene <it>(def1 </it>and <it>def2</it>) were identified in the European tick <it>Ixodes ricinus</it>. Expression of both genes was induced in different tick organs by a blood feeding or pathogen injection. We have tested the ability of synthetic peptides def1 and def2 to inhibit the growth or directly kill several pathogens. The antimicrobial activities (expressed as minimal inhibition concentration and minimal bactericidal concentration values) against Gram positive bacteria were confirmed, while Gram negative bacteria, yeast, Tick Borne Encephalitis and West Nile Viruses were shown to be insensitive. In addition to antimicrobial activities, the hemolysis effect of def1 and def2 on human erythrocytes was also established.</p> <p>Conclusions</p> <p>Although there is nothing known about the realistic concentration of defensins in <it>I. ricinus </it>tick body, these results suggest that defensins play an important role in defence against different pathogens. Moreover this is a first report of a one amino acid substitution in a defensins molecule and its impact on antimicrobial activity.</p

    Dermacentor reticulatus: a vector on the rise

    Get PDF
    Dermacentor reticulatus is a hard tick species with extraordinary biological features. It has a high reproduction rate, a rapid developmental cycle, and is also able to overcome years of unfavourable conditions. Dermacentor reticulatus can survive under water for several months and is cold-hardy even compared to other tick species. It has a wide host range: over 60 different wild and domesticated hosts are known for the three active developmental stages. Its high adaptiveness gives an edge to this tick species as shown by new data on the emergence and establishment of D. reticulatus populations throughout Europe. The tick has been the research focus of a growing number of scientists, physicians and veterinarians. Within the Web of Science database, more than a fifth of the over 700 items published on this species between 1897 and 2015 appeared in the last three years (2013–2015). Here we attempt to synthesize current knowledge on the systematics, ecology, geographical distribution and recent spread of the species and to highlight the great spectrum of possible veterinary and public health threats it poses. Canine babesiosis caused by Babesia canis is a severe leading canine vector-borne disease in many endemic areas. Although less frequently than Ixodes ricinus, D. reticulatus adults bite humans and transmit several Rickettsia spp., Omsk haemorrhagic fever virus or Tick-borne encephalitis virus. We have not solely collected and reviewed the latest and fundamental scientific papers available in primary databases but also widened our scope to books, theses, conference papers and specialists colleagues’ experience where needed. Besides the dominant literature available in English, we also tried to access scientific literature in German, Russian and eastern European languages as well. We hope to inspire future research projects that are necessary to understand the basic life-cycle and ecology of this vector in order to understand and prevent disease threats. We conclude that although great strides have been made in our knowledge of the eco-epidemiology of this species, several gaps still need to be filled with basic research, targeting possible reservoir and vector roles and the key factors resulting in the observed geographical spread of D. reticulatus. ELECTRONIC SUPPLEMENTARY MATERIAL: The online version of this article (doi:10.1186/s13071-016-1599-x) contains supplementary material, which is available to authorized users

    Tick-borne encephalitis: A comprehensive review of the epidemiology, virology, and clinical picture.

    No full text
    Tick-borne encephalitis virus (TBEV) is a flavivirus commonly found in at least 27 European and Asian countries. It is an emerging public health problem, with steadily increasing case numbers over recent decades. Tick-borne encephalitis virus affects between 10,000 and 15,000 patients annually. Infection occurs through the bite of an infected tick and, much less commonly, through infected milk consumption or aerosols. The TBEV genome comprises a positive-sense single-stranded RNA molecule of ∼11 kilobases. The open reading frame is > 10,000 bases long, flanked by untranslated regions (UTR), and encodes a polyprotein that is co- and post-transcriptionally processed into three structural and seven non-structural proteins. Tick-borne encephalitis virus infection results in encephalitis, often with a characteristic biphasic disease course. After a short incubation time, the viraemic phase is characterised by non-specific influenza-like symptoms. After an asymptomatic period of 2-7 days, more than half of patients show progression to a neurological phase, usually characterised by central and, rarely, peripheral nervous system symptoms. Mortality is low-around 1% of confirmed cases, depending on the viral subtype. After acute tick-borne encephalitis (TBE), a minority of patients experience long-term neurological deficits. Additionally, 40%-50% of patients develop a post-encephalitic syndrome, which significantly impairs daily activities and quality of life. Although TBEV has been described for several decades, no specific treatment exists. Much remains unknown regarding the objective assessment of long-lasting sequelae. Additional research is needed to better understand, prevent, and treat TBE. In this review, we aim to provide a comprehensive overview of the epidemiology, virology, and clinical picture of TBE

    Model of Risk of Exposure to Lyme Borreliosis and Tick-Borne Encephalitis Virus-Infected Ticks in the Border Area of the Czech Republic (South Bohemia) and Germany (Lower Bavaria and Upper Palatinate)

    Get PDF
    In Europe, Lyme borreliosis (LB) and tick-borne encephalitis (TBE) are the two vector-borne diseases with the largest impact on human health. Based on data on the density of host-seeking Ixodes ricinus ticks and pathogen prevalence and using a variety of environmental data, we have created an acarological risk model for a region where both diseases are endemic (Czech Republic—South Bohemia and Germany—Lower Bavaria, Upper Palatinate). The data on tick density were acquired by flagging 50 sampling sites three times in a single season. Prevalence of the causative agents of LB and TBE was determined. Data on environmental variables (e.g., altitude, vegetation cover, NDVI, land surface temperature) were obtained from various sources and processed using geographical information systems. Generalized linear models were used to estimate tick density, probability of tick infection, and density of infected ticks for the whole area. A significantly higher incidence of human TBE cases was recorded in South Bohemia compared to Bavarian regions, which correlated with a lower tick density in Bavaria. However, the differences in pathogen prevalence rates were not significant. The model outputs were made available to the public in the form of risk maps, indicating the distribution of tick-borne disease risk in space

    Cell lines from the soft tick Ornithodoros moubata

    Get PDF
    Primary cell cultures (n = 16) were initiated from tissues of embryonic and neonatal larval Ornithodoros moubata following methods developed for hard ticks. After maintenance for 20–25 months in vitro, cell multiplication commenced in surviving cultures, leading to the establishment of six cell lines designated OME/CTVM21, 22, 24, 25, 26 and 27. All lines are maintained at 28°C, with subculture at 2–8 week intervals. The cultures comprise heterogeneous populations of large cells of 15–100 μm in diameter, often with finger-like protrusions and/or intracellular crystals, rarely attached, predominantly floating and forming clumps or hollow multicellular vesicles up to 1 mm in diameter. Attempts to cryopreserve the cells are described. Tick-borne encephalitis virus has been serially passaged ten times in OME/CTVM21 cells without significant decrease in virus production and with no change in its biological properties as shown by the size and morphology of plaques produced in porcine kidney cells

    May early intervention with high dose intravenous immunoglobulin pose a potentially successful treatment for severe cases of tick-borne encephalitis?

    Get PDF
    BACKGROUND: Arthropod-borne viral encephalitis of diverse origins shows similar clinical symptoms, histopathology and magnetic resonance imaging, indicating that the patho mechanisms may be similar. There is no specific therapy to date. However, vaccination remains the best prophylaxis against a selected few. Regardless of these shortcomings, there are an increasing number of case reports that successfully treat arboviral encephalitis with high doses of intravenous immunoglobulins. DISCUSSION: To our knowledge, high dose intravenous immunoglobulin has not been tested systematically for treating severe cases of tick-borne encephalitis. Antibody-dependent enhancement has been suspected, but not proven, in several juvenile cases of tick-borne encephalitis. Although antibody-dependent enhancement during secondary infection with dengue virus has been documented, no adverse effects were noticed in a controlled study of high dose intravenous immunoglobulin therapy for dengue-associated thrombocytopenia. The inflammation-dampening therapeutic effects of generic high dose intravenous immunoglobulins may override the antibody-dependent enhancement effects that are potentially induced by cross-reactive antibodies or by virus-specific antibodies at sub-neutralizing levels. SUMMARY: Analogous to the increasing number of case reports on the successful treatment of other arboviral encephalitides with high dose intravenous immunoglobulins, we postulate whether it may be possible to also treat severe cases of tick-borne encephalitis with high dose intravenous immunoglobulins as early in the course of the disease as possible
    corecore