204 research outputs found

    Antimony in Polyethylene Terephthalate-Bottled Beverages: The Migration Puzzle

    Full text link
    A novel strategy to assess the main variables that potentially affect the migration of antimony from PET bottles to beverages, including mineral waters and juices, is herein proposed. In a preliminary step, an LC-ICP-MS method previously used for water analysis was optimized to correct identify Sb species present in the studied matrices using HRMS. Subsequently, the influence of temperature and storage time up to 30 days on Sb migration from PET bottles into peach and pineapple juices of the same brand was studied. Storing PET bottled drinks at elevated temperatures (i.e., in a hot car or in summer) can cause antimony migration to exceed the limits allowed in the EU or USA. Because the behavior observed differed from the results reported for Sb migration in mineral waters, a second approach was proposed: three mineral water and two juice samples were kept in different PET containers and stored at an elevated temperature (up to 60 °C) to understand the role of the PET type and matrix simultaneously. This study demonstrated that both matrix characteristics and type of PET bottle greatly influence antimony leaching, highlighting the need to consider these variables together when conducting migration experiments. The obtained results can be helpful for developing future legislation concerning migration of pollutants from packing to food commodities

    Inorganic arsenic determination in food: a review of analytical proposals and quality assessment over the last six years

    Get PDF
    Here we review recent developments in analytical proposals for the assessment of inorganic arsenic (iAs) content in food products. Interest in the determination of iAs in products for human consumption such as food commodities, wine, and seaweed among others is fueled by the wide recognition of its toxic effects on humans, even at low concentrations. Currently, the need for robust and reliable analytical methods is recognized by various international safety and health agencies, and by organizations in charge of establishing acceptable tolerance levels of iAs in food. This review summarizes the state of the art of analytical methods while highlighting tools for the assessment of quality assessment of the results, such as the production and evaluation of certified reference materials (CRMs) and the availability of specific proficiency testing (PT) programmes. Because the number of studies dedicated to the subject of this review has increased considerably over recent years, the sources consulted and cited here are limited to those from 2010 to the end of 2015

    Mapping the sustainable development goals into the EDINSOST sustainability map of bachelor engineering degrees

    Get PDF
    © 2019 IEEE. Personal use of this material is permitted. Permission from IEEE must be obtained for all other uses, in any current or future media, including reprinting/republishing this material for advertising or promotional purposes,creating new collective works, for resale or redistribution to servers or lists, or reuse of any copyrighted component of this work in other works.This Research to Practice Work in Progress paper presents the work conducted on the use of the Sustainability Map of Bachelor Engineering Degrees (a tool developed by the EDINSOST project) to analyze how Sustainable Development Goals (SDGs) are developed in each Degree. Over recent years, there has been a growth in the importance of working sustainability based on the SDGs. To identify which learning objective of each SDG corresponds to each learning outcome of the EDINSOST Sustainability Map, a correspondence matrix has been defined. The matrix contains the learning outcomes of the EDINSOST Sustainability Map in its rows, and the 17 SDGs in the columns. The cells of the matrix contain the learning objectives of the SDGs that correspond to each learning outcome of the EDINSOST Sustainability Map. This work in progress presents the first results of the process of mapping the SDGs into the EDINSOST Sustainability Map of Engineering Bachelor Degrees. Early results show that some of the 169 learning objectives are not applicable to Engineering Degrees. Likewise, we have seen that learning objectives have been defined more for policy makers than for engineers, and therefore adaptation is not an easy task. However, the work done has helped us to verify that the EDINSOST Sustainability Map can help in the introduction of the SDGs into the curriculum.Peer ReviewedPostprint (author's final draft

    A learning tool to develop sustainable projects

    Get PDF
    This paper presents a tool developed to help engineers to design and develop sustainable projects. The tool has been designed to introduce and evaluate the sustainability of engineering projects in general, but here we show its application to assess the final project of an engineering degree. This tool is a guide for students to introduce and estimate the sustainability of their projects, but it also helps teachers to assess them. The tool is based on the Socratic Methodology and consists of a matrix where each cell contains several questions that students must consider during the project development and which they must answer in their project report. A positive or negative mark is assigned to every cell, and the sum of all marks states the project sustainability. However, the result is not as simplistic as a final number, but a descriptive sustainability analysis where questions are answered and every mark justified. A pilot test with some students has obtained good results, but the first Final Degree Project using this methodology will be read in July 2016.Peer ReviewedPostprint (author's final draft

    Migration of antimony from polyethylene terephthalate used in mineral water bottles.

    Get PDF
    The influence of storage time and temperature on Sb migration from PET bottles into mineral water was studied in short-term tests lasting up to 15 days and long-term studies lasting up to 220 days. Samples purchased were stored in three different coloured bottles: clear (CL), light blue (LB) and dark blue (DB). Sb migration was assayed by HG-AFS for total determination and HPLC-ICP-MS for speciation analysis. Migration studies showed that waters stored at 4 and 20 oC were not subject to Sb migration. At 40 oC there was a significant increase in Sb concentration, although the maximum limit established by the European Union (5.0 ug/L) was not exceeded, whereas at 60 oC samples were subject to considerable Sb migration after 30 days of storage. In this case, the maximum limit established by the European Union was exceeded and both Sb (V) and Sb (III) were detected

    Occurrence of inorganic arsenic in edible Shiitake (Lentinula edodes) products

    Full text link
    The present study reports arsenic speciation analysis in edible Shiitake (Lentinula edodes) products. The study focused on the extraction, and accurate quantification of inorganic arsenic (iAs), the most toxic form of arsenic, which was selectively separated and determined using anion exchange LC-ICPMS. A wide variety of edible Shiitake products (fresh mushrooms, food supplements, canned and dehydrated) were purchased and analysed. A cultivated Shiitake grown under controlled conditions was also analysed. The extraction method showed satisfactory extraction efficiencies (>90%) and column recoveries (>85%) for all samples. Arsenic speciation revealed that iAs was the major As compound up to 1.38 mg As per kg dm (with a mean percentage of 84% of the total arsenic) and other organoarsenicals were found as minor species. Shiitake products had high proportions of iAs and therefore should not be ignored as potential contributors to dietary iAs exposure in populations with a high intake of Shiitake products

    Establishment of a method for determination of arsenic species in seafood by LC-ICP-MS

    Get PDF
    An analytical method for determination of arsenic species (inorganic arsenic (iAs), methylarsonic acid (MA), dimethylarsinic acid (DMA), arsenobetaine (AB), trimethylarsine oxide (TMAO) and arsenocholine (AC)) in Brazilian and Spanish seafood samples is reported. This study was focused on extraction and quantification of inorganic arsenic (iAs), the most toxic form. Arsenic speciation was carried out via LC with both anionic and cationic exchange with ICP-MS detection (LC-ICP-MS). The detection limits (LODs), quantification limits (LOQs), precision and accuracy for arsenic species were established. The proposed method was evaluated using eight reference materials (RMs). Arsenobetaine was the main species found in all samples. The total and iAs concentration in 22 seafood samples and RMs ranged between 0.27-35.2 and 0.02-0.71 mg As kg-1, respectively. Recoveries ranging from 100% to 106% for iAs, based on spikes, were achieved. The proposed method provides reliable iAs data for future risk assessment analysis

    Arsenosugar standards extracted from algae: Isolation, characterization and use for identification and quantification purposes

    Get PDF
    Sulfate (SO4-sug) and sulfonate (SO3-sug) arsenosugar standard solutions were obtained using preparative liquid chromatography. Several commercial algae samples were characterized (total contents and speciation) to select the most appropriate in relation to their arsenosugar contents. Water extracts from the selected sample (Fucus vesiculosus) were fractionated using a Hamilton PRP-X100 preparative column, and the presence of arsenic species in the isolated fractions was ascertained by IC-ICP-MS. Two of the fractions successfully presented only one arsenic species corresponding to sulfate and sulfonate arsenosugars at suitable concentrations. To unequivocally confirm the presence of both compounds, high-resolution mass spectrometry (ESITOF/ MS) was used and the exact mass determined with errors lower than 0.5 ppm. The standard solutions obtained were successfully used to identify and quantify SO4-sug and SO3-sug in several edible algae samples purchased in local market. Total arsenic content for analysed samples ranged from 34 to 57 mg·kg-1, concentration values found for SO3-sug ranged from 5 to 36 mg As·kg-1 and SO4-sug was only found in fucus with a concentration of 9,3 mg As·kg-1

    A methodology to introduce sustainability into the Final Year Project to foster sustainable engineering projects

    Get PDF
    The introduction of sustainability skills into higher education curricula is a natural effect of the increasing importance of sustainability in our daily lives. Topics like green computing, sustainable design or environmental engineering have become part of the knowledge required by today’s engineers. Furthermore, we strongly believe that the introduction of this skill will eventually enable future engineers to develop sustainable products, services and projects. The Final Year Project is the last academic stage facing students and a step towards their future professional engineering projects. As such, it constitutes a rehearsal for their professional future and an ideal opportunity for reflecting on whether their Final Year Project is sustainable or not, and to what extent. It also provides a good tool for reviewing the lessons learned about sustainability during the degree course and for applying them in a holistic and integrated way. In this paper, we present a guide that allows both students and advisors to think carefully about the sustainability of engineering projects, in particular the Final Year Project.Postprint (author’s final draft

    Characterization of Musts, Wines, and Sparkling Wines Based on Their Elemental Composition Determined by ICP-OES and ICP-MS

    Full text link
    t: Samples from the different processing stages in the elaboration of sparkling wine (cava) including must, base wine, and sparkling wine of Pinot Noir and Xarel·lo grape varieties from different vineyard qualities (A, B, C, D) have been analyzed by inductively coupled plasma (ICP) techniques to determine their elemental composition. The resulting data has been used to characterize these products according to oenological features and product qualities. For this purpose, box plot diagrams, bar charts, and principal components analysis (PCA) have been used. The study of the behavior of each given species has pointed out the relevance of some elements as markers or descriptors of winemaking processes. Among others, Cu and K are abundant in musts and their concentrations progressively decrease through the cava production process. S levels suddenly increase at the base wine step (and further decay) due to the addition of sulfites as preserving agents. Finally, concentrations of Na, Ca, Fe, and Mg increase from the first fermentation due to the addition of clarifying agents such as bentonite. PCA has been applied to try to extract solid and global conclusions on trends and chemical markers within the groups of samples more easily and efficiently than more conventional approaches
    corecore