694 research outputs found

    Figures de Rhétorique dans Le Seigneur des Anneaux de J.R.R. Tolkien : Approche exploratoire d’une œuvre d’inspiration fondamentalement linguistique

    Get PDF
    The growing academic respect for and interest in Professor Tolkien’s Legendarium together with his worldwide popularity not only stem from his treatment of great literary themes and his recognized talent as a story-teller but also, as Tolkien scholar Michael Drout points out, from his ability to “produce aesthetic effects simultaneously on multiple levels, so that the effects created […] are connected with the themes of cultural interaction and individual morality that are integral to Tolkien’s vision”. This paper examines the author’s meticulous craftsmanship in his handling of rhetorical figures and their interrelationships with the principles of the world thus sub-created

    Production of positronium chloride: A study of the charge exchange reaction between Ps and Cl^{-}

    Full text link
    We present cross sections for the formation of positronium chloride (PsCl) in its ground state from the charge exchange between positronium (Ps) and chloride (Cl^-) in the range of 10 meV - 100 eV Ps energy. We have used theoretical models based on the first Born approximation in its three-body formulation. We simulated the collisions between Ps and Cl^- using ab-initio methods at both mean-field and correlated levels extrapolated to the complete basis set limit. We have investigated Ps excited states up to n=4{n=4}. The results suggest that the channel Ps(n=2{n=2}) is of particular interest for the production of PsCl in the ground state, and shows that an accurate treatment of the electronic correlation leads to a significant change in the global shape of the PsCl production cross section with respect to the mean-field level.Comment: 13 Pages, 7 Figures, 3 Table

    Detection of the tagged or untagged photons in acousto-optic imaging of thick highly scattering media by photorefractive adaptive holography

    Full text link
    We propose an original adaptive wavefront holographic setup based on the photorefractive effect (PR), to make real-time measurements of acousto-optic signals in thick scattering media, with a high flux collection at high rates for breast tumor detection. We describe here our present state of art and understanding on the problem of breast imaging with PR detection of the acousto-optic signal

    Local and nonlocal pressure Hessian effects in real and synthetic fluid turbulence

    Full text link
    The Lagrangian dynamics of the velocity gradient tensor A in isotropic and homogeneous turbulence depend on the joint action of the self-streching term and the pressure Hessian. Existing closures for pressure effects in terms of A are unable to reproduce one important statistical role played by the anisotropic part of the pressure Hessian, namely the redistribution of the probabilities towards enstrophy production dominated regions. As a step towards elucidating the required properties of closures, we study several synthetic velocity fields and how well they reproduce anisotropic pressure effects. It is found that synthetic (i) Gaussian, (ii) Multifractal and (iii) Minimal Turnover Lagrangian Map (MTLM) incompressible velocity fields reproduce many features of real pressure fields that are obtained from numerical simulations of the Navier Stokes equations, including the redistribution towards enstrophy-production regions. The synthetic fields include both spatially local, and nonlocal, anisotropic pressure effects. However, we show that the local effects appear to be the most important ones: by assuming that the pressure Hessian is local in space, an expression in terms of the Hessian of the second invariant Q of the velocity gradient tensor can be obtained. This term is found to be well correlated with the true pressure Hessian both in terms of eigenvalue magnitudes and eigenvector alignments.Comment: 10 pages, 4 figures, minor changes, final version, published in Phys. Fluid

    Saving Cultural Heritage with Digital Make-Believe: Machine Learning and Digital Techniques to the Rescue

    Get PDF
    The application of digital methods for content-based curation and dissemination of cultural heritage data offers unique advantages for physical sites at risk of damage. In areas affected by 2011 Arab spring, digital may be the only approach to create believable cultural experiences. We propose a framework incorporating computational methods such as: digital image processing, multi-lingual text analysis, and 3D modelling, to facilitate enhanced data archive, federated search, and analysis. Potential use cases include experiential search, damage assessment, virtual site reconstruction, and provision of augmented information for education and cultural preservation. This paper presents initial findings from an empirical evaluation of existing scene classification methods, applied to detection of cultural heritage sites in the Palmyra region. Results indicate that deep learning offers an appropriate solution to semantic annotation of publicly available cultural heritage image data

    Convergence of the Generalized Volume Averaging Method on a Convection-Diffusion Problem: A Spectral Perspective

    Get PDF
    A mixed formulation is proposed and analyzed mathematically for coupled convection-diffusion in heterogeneous medias. Transfer in solid parts driven by pure diffusion is coupled with convection-diffusion transfer in fluid parts. This study is carried out for translation-invariant geometries (general infinite cylinders) and unidirectional flows. This formulation brings to the fore a new convection-diffusion operator, the properties of which are mathematically studied: its symmetry is first shown using a suitable scalar product. It is proved to be self-adjoint with compact resolvent on a simple Hilbert space. Its spectrum is characterized as being composed of a double set of eigenvalues: one converging towards −∞ and the other towards +∞, thus resulting in a nonsectorial operator. The decomposition of the convection-diffusion problem into a generalized eigenvalue problem permits the reduction of the original three-dimensional problem into a two-dimensional one. Despite the operator being nonsectorial, a complete solution on the infinite cylinder, associated to a step change of the wall temperature at the origin, is exhibited with the help of the operator’s two sets of eigenvalues/eigenfunctions. On the computational point of view, a mixed variational formulation is naturally associated to the eigenvalue problem. Numerical illustrations are provided for axisymmetrical situations, the convergence of which is found to be consistent with the numerical discretization

    Impact of Backbone fluorination on -conjugated polymers in organic photovoltaic devices: a review

    Get PDF
    Solution-processed bulk heterojunction solar cells have experienced a remarkable acceleration in performances in the last two decades, reaching power conversion efficiencies above 10%. This impressive progress is the outcome of a simultaneous development of more advanced device architectures and of optimized semiconducting polymers. Several chemical approaches have been developed to fine-tune the optoelectronics and structural polymer parameters required to reach high efficiencies. Fluorination of the conjugated polymer backbone has appeared recently to be an especially promising approach for the development of efficient semiconducting polymers. As a matter of fact, most currently best-performing semiconducting polymers are using fluorine atoms in their conjugated backbone. In this review, we attempt to give an up-to-date overview of the latest results achieved on fluorinated polymers for solar cells and to highlight general polymer properties’ evolution trends related to the fluorination of their conjugated backbone

    Near-field polarization conversion in planar chiral nanostructures

    No full text
    Enantiomeric-sensitive optical polarization conversion has been observed in the near-field above a planar chiral nanostructures consisting of an array of gammadions cut in a metal film. Formation of the far-field scattered light rotated with respect to the incident linear polarized light has been visualized

    Impact of Backbone fluorination on -conjugated polymers in organic photovoltaic devices: a review

    Get PDF
    Solution-processed bulk heterojunction solar cells have experienced a remarkable acceleration in performances in the last two decades, reaching power conversion efficiencies above 10%. This impressive progress is the outcome of a simultaneous development of more advanced device architectures and of optimized semiconducting polymers. Several chemical approaches have been developed to fine-tune the optoelectronics and structural polymer parameters required to reach high efficiencies. Fluorination of the conjugated polymer backbone has appeared recently to be an especially promising approach for the development of efficient semiconducting polymers. As a matter of fact, most currently best-performing semiconducting polymers are using fluorine atoms in their conjugated backbone. In this review, we attempt to give an up-to-date overview of the latest results achieved on fluorinated polymers for solar cells and to highlight general polymer properties’ evolution trends related to the fluorination of their conjugated backbone
    corecore