4,643 research outputs found

    Population Genetics and Economic Growth

    Get PDF
    This paper builds an age-structural model of human population genetics in which agents are endowed with a high-dimensional genome that determines their cognitive and physical characteristics. Young adults optimally search for a marriage partner, work for firms, consume goods, save for old age and, if married, decide how many children to have. Applying the fundamental genetic operations, children receive genetic material from their parents. An agent's human capital (productivity) is an aggregate of the received genetic endowment and environmental influences. Thus, the population of agents and the economy co-evolve. The model examines the impact of social and economic institutions on economic performance, including inequality in income and genetic attributes, the transition to an information economy, population bottlenecks, matchmaking, and love. We find that institutional factors significantly impact economic performance by affecting marriage, family size, and the intergenerational transmission of genes.growth; population biology; psychology; fertility; marriage; genetics; evolution

    Design and Modeling of a New Biomimetic Soft Robotic Jellyfish Using IPMC-Based Electroactive Polymers

    Get PDF
    Smart materials and soft robotics have been seen to be particularly well-suited for developing biomimetic devices and are active fields of research. In this study, the design and modeling of a new biomimetic soft robot is described. Initial work was made in the modeling of a biomimetic robot based on the locomotion and kinematics of jellyfish. Modifications were made to the governing equations for jellyfish locomotion that accounted for geometric differences between biology and the robotic design. In particular, the capability of the model to account for the mass and geometry of the robot design has been added for better flexibility in the model setup. A simple geometrically defined model is developed and used to show the feasibility of a proposed biomimetic robot under a prescribed geometric deformation to the robot structure. A more robust mechanics model is then developed which uses linear beam theory is coupled to an equivalent circuit model to simulate actuation of the robot with ionic polymer-metal composite (IPMC) actuators. The mechanics model of the soft robot is compared to that of the geometric model as well as biological jellyfish swimming to highlight its improved efficiency. The design models are characterized against a biological jellyfish model in terms of propulsive efficiency. Using the mechanics model, the locomotive energetics as modeled in literature on biological jellyfish are explored. Locomotive efficiency and cost as a function of swimming cycles are examined for various swimming modes developed, followed by an analysis of the initial transient and steady-state swimming velocities. Applications for fluid pumping or thrust vectoring utilizing the same basic robot design are also proposed. The new design shows a clear advantage over its purely biological counterpart for a soft-robot, with the newly proposed biomimetic swimming mode offering enhanced swimming efficiency and steady-state velocities for a given size and volume exchange

    An IPMC-Enabled Bio-Inspired bending/twisting Fin for Underwater Applications

    Full text link
    This paper discusses the design, fabrication, and characterization of an ionic polymer–metal composite (IPMC) actuator-based bio-inspired active fin capable of bending and twisting motion. It is pointed out that IPMC strip actuators are used in the simple cantilever configuration to create simple bending (flapping-like) motion for propulsion in underwater autonomous systems. However, the resulting motion is a simple 1D bending and performance is rather limited. To enable more complex deformation, such as the flapping (pitch and heaving) motion of real pectoral and caudal fish fins, a new approach which involves molding or integrating IPMC actuators into a soft boot material to create an active control surface (called a \u27fin\u27) is presented. The fin can be used to realize complex deformation depending on the orientation and placement of the actuators. In contrast to previously created IPMCs with patterned electrodes for the same purpose, the proposed design avoids (1) the more expensive process of electroless plating platinum all throughout the surface of the actuator and (2) the need for specially patterning the electrodes. Therefore, standard shaped IPMC actuators such as those with rectangular dimensions with varying thicknesses can be used. One unique advantage of the proposed structural design is that custom shaped fins and control surfaces can be easily created without special materials processing. The molding process is cost effective and does not require functionalizing or \u27activating\u27 the boot material similar to creating IPMCs. For a prototype fin (90 mm wide × 60 mm long× 1.5 mm thick), the measured maximum tip displacement was approximately 44 mm and the twist angle of the fin exceeded 10°. Lift and drag measurements in water where the prototype fin with an airfoil profile was dragged through water at a velocity of 21 cm s−1 showed that the lift and drag forces can be affected by controlling the IPMCs embedded into the fin structure. These results suggest that such IPMC-enabled fin designs can be used for developing active propeller blades or control surfaces on underwater vehicles

    Hypotheses Testing from Complex Survey Data Using Bootstrap Weights: A Unified Approach

    Get PDF
    Standard statistical methods that do not take proper account of the complexity of survey design can lead to erroneous inferences when applied to survey data due to unequal selection probabilities, clustering, and other design features. In particular, the actual type I error rates of tests of hypotheses based on standard tests can be much bigger than the nominal significance level. Methods that take account of survey design features in testing hypotheses have been proposed, including Wald tests and quasi-score tests that involve the estimated covariance matrices of parameter estimates. Bootstrap methods designed for survey data are often applied to estimate the covariance matrices, using the data file containing columns of bootstrap weights. Standard statistical packages often permit the use of survey weighted test statistics, and it is attractive to approximate their distributions under the null hypothesis by their bootstrap analogues computed from the bootstrap weights supplied in the data file. In this paper, we present a unified approach to the above method by constructing bootstrap approximations to weighted likelihood ratio statistics and weighted quasi-score statistics and establish the asymptotic validity of the proposed bootstrap tests. In addition, we also consider hypothesis testing from categorical data and present a bootstrap procedure for testing simple goodness of fit and independence in a two-way table. In the simulation studies, the type I error rates of the proposed approach are much closer to their nominal level compared with the naive likelihood ratio test and quasi-score test. An application to data from an educational survey under a logistic regression model is also presented

    Population Genetics and Economic Growth

    Full text link
    This paper builds an age-structural model of human population genetics in which agents are endowed with a high-dimensional genome that determines their cognitive and physical characteristics. Young adults optimally search for a marriage partner, work for firms, consume goods, save for old age and, if married, decide how many children to have. Applying the fundamental genetic operations, children receive genetic material from their parents. An agent's human capital (productivity) is an aggregate of the received genetic endowment and environmental influences. Thus, the population of agents and the economy co-evolve. The model examines the impact of social and economic institutions on economic performance, including inequality in income and genetic attributes, the transition to an information economy, population bottlenecks, matchmaking, and love. We find that institutional factors significantly impact economic performance by affecting marriage, family size, and the intergenerational transmission of genes
    • …
    corecore