31 research outputs found

    Shinsei-maru "Cruise Report" KS-19-10

    No full text
    調査海域: 鹿島沖, 気仙沼沖, 久慈沖, 六ケ所沖, 十勝沖, 根室沖 / Area: Slope regions off Kashima, Kesen-numa, Kuji, Rokkasho, Tokachi, Nemuro ; 期間: 2019年6月18日~2019年6月24日 / Operation Period: June 18, 2019~June 24, 2019http://www.godac.jamstec.go.jp/darwin/cruise/shinsei_maru/ks-19-10/

    Seasonal variations in planktonic foraminiferal flux and oxygen isotopic composition in the western North Pacific : Implications for paleoceanographic reconstruction

    Get PDF
    The oxygen isotopic composition (delta O-18) of planktonic foraminiferal shells in seafloor sediment provides information on past surface oceanography. Knowledge of seasonal and depth habitat, as well as the delta O-18 disequilibrium (vital effect), is essential to constrain the interpretation of sedimentary delta O-18. Here, we present a 1-year time series of planktonic foraminiferal shell fluxes and delta(18)Ofrom a sediment trap moored in the northwestern margin of the North Pacific. The vital effect and calcification depth for four species were estimated by comparing shell delta O-18 and the predicted values of equilibrium calcite calculated from temperature and estimated delta O-18 in seawater. Six major species (Neogloboquadrina incompta, Nedgloboquadrina dutertrei, Neogloboquadrina pachyderma, Globigerina quinqueloba, Globigerina bulloides, and Globorotalia scitula) constituted 97% of the total foraminiferal flux. Most major species showed large fluxes in June and December, corresponding to periods of the development and disruption of the seasonal thermocline, implying the importance of nutrient injection and/or circulation for foraminiferal fluxes. Additional peaks in N. dutertrei and N. pachyderma were observed in August. The seasonal successions of foraminiferal fluxes corresponded to surface ocean stratification conditions and food availability, which are closely related to circulation of local currents. Vital effect estimations suggest that shells calcified in equilibrium for G. bulloides and N. pachyderma [sinistral (s)1 and with a -0.7% offset for N. dutertrei [dextral (d)], a -1.0%, offset for N. incompta (d), and a -03% offset for N. pachyderma (d). The calculation of flux-weighted delta O-18 values reveals that the sedimentary delta O-18 values of G. bulloides, N. dutertrei (d), and N. incompta (d) reflect surface temperature in winter season, and those of N. pachyderma (s) and N. pachyderma (d) reflect summer and annual mean subsurface temperature, respectively. The shallow calcification depths for the four species suggest that delta O-18 between different species (Delta delta O-18) in the western North Pacific does not work for reconstructing past stratification conditions, unlike in other regions. Rather, the delta O-18 between N. pachyderma (s) and G. bulloides, N. dutertrei (d) or N. incompta (d) may be a more suitable proxy for past seasonality. (C) 2013 Elsevier B.V. All rights reserved

    Reconstructing the chronology of the natural and anthropogenic uranium isotopic signals in a marine sediment core from Beppu Bay, Japan

    No full text
    The long-lived U isotopes, 233U and 236U, have been used increasingly in recent years as marine circulation tracers and for identifying sources of uranium contamination in the environment. The sedimentation histories of these two U isotopes in combination with natural 238U were reconstructed for an anoxic sediment core collected from Beppu Bay, Japan, in the western North Pacific Ocean showing good time resolution (less than 2.6 y/sample). The 233U/236U atom ratio showed a prominent peak of (3.20 ± 0.30) × 10−2 around 1957 which can be attributed to the input from atmospheric nuclear weapons tests including thermonuclear tests conducting in the Equatorial Pacific. The integrated 233U/236U ratio of (1.64 ± 0.08) × 10−2 for the sediment was found to be in relatively good agreement with the representative ratio published for global fallout (∼1.4 × 10−2). A prominent increase in the authigenic ratio of 233U/238Ua,s in the leached fraction (1.39 ± 0.11 × 10−11) and the bulk digestion (1.36 ± 0.10 × 10−11) was also observed around 1957. This reflects the input supply of 233U to the seawater which is known to have a relatively constant 238U content. The authigenic 236U/238Ua,s ratio (0.18 ± 0.02 × 10−9) obtained for 1921 increased from the early 1950's to a maximum of (6.59 ± 0.60) × 10−9 around 1962. The variation in this ratio represents well the introduction history of U into the surface environment without site-specific U contamination and the time profile is also consistent with the 137Cs signature. This work thus provides a benchmark for the long-term use of the isotopic U composition as an input parameter for seawater circulation tracers and as a chronological marker for anoxic sediments and sedimentary rocks. Especially the 233U/236U ratio may serve as a key-marker for the new geological age Anthropocene

    Late Holocene centennial to millennial-scale variability in lower trophic level productivity off southern Hokkaido, Japan, and its response to dissolved iron-replete Coastal Oyashio dynamics

    Get PDF
    Little is known about the dynamics of marine food chains spanning primary to higher trophic levels on centennial and longer timescales, especially where the supply of dissolved iron limits primary productivity. To elucidate the long-term dynamics of biological productivity in the Coastal Oyashio (CO), which is a major pathway for transporting dissolved iron into the western North Pacific from winter to spring, we reconstructed the lower trophic level productivity over the last 3000 years in the CO. Our results demonstrate that the concentrations and mass accumulation rates of both Chl-a (chlorophyll a and its derivatives) and biogenic opal used as proxies of primary productivity, and steryl chlorin esters (SCEs) used as that of zooplankton productivity, show a millennial-scale increasing trend and centennial-scale variability beginning ca. AD 400. SCEs were positively correlated with Chl-a, indicating that changes in zooplankton productivity were induced by bottom-up control of primary productivity. The Chl-a and SCEs showed synchronous centennial-scale patterns with a relative abundance of sea-ice-associated diatom species transported by CO, and with a ventilation index in the Okhotsk Sea Intermediate Water. This synchronous pattern indicates that lower trophic-level productivity during the spring bloom responded to the intensity of iron-replete CO

    Phospholipid-Derived Fatty Acids and Quinones as Markers for Bacterial Biomass and Community Structure in Marine Sediments

    No full text
    <div><p>Phospholipid-derived fatty acids (PLFA) and respiratory quinones (RQ) are microbial compounds that have been utilized as biomarkers to quantify bacterial biomass and to characterize microbial community structure in sediments, waters, and soils. While PLFAs have been widely used as quantitative bacterial biomarkers in marine sediments, applications of quinone analysis in marine sediments are very limited. In this study, we investigated the relation between both groups of bacterial biomarkers in a broad range of marine sediments from the intertidal zone to the deep sea. We found a good log-log correlation between concentrations of bacterial PLFA and RQ over several orders of magnitude. This relationship is probably due to metabolic variation in quinone concentrations in bacterial cells in different environments, whereas PLFA concentrations are relatively stable under different conditions. We also found a good agreement in the community structure classifications based on the bacterial PLFAs and RQs. These results strengthen the application of both compounds as quantitative bacterial biomarkers. Moreover, the bacterial PLFA- and RQ profiles revealed a comparable dissimilarity pattern of the sampled sediments, but with a higher level of dissimilarity for the RQs. This means that the quinone method has a higher resolution for resolving differences in bacterial community composition. Combining PLFA and quinone analysis as a complementary method is a good strategy to yield higher resolving power in bacterial community structure.</p></div
    corecore