46 research outputs found

    A multi-wavelength view on the dusty Wolf-Rayet star WR 48a

    Get PDF
    We present results from the first attempts to derive various physical characteristics of the dusty Wolf-Rayet star WR 48a based on a multi-wavelength view of its observational properties. This is done on the basis of new optical and near-infrared spectral observations and on data from various archives in the optical, radio and X-rays. The optical spectrum of WR 48a is acceptably well represented by a sum of two spectra: of a WR star of the WC8 type and of a WR star of the WN8h type. The strength of the interstellar absorption features in the optical spectra of WR 48a and the near-by stars D2-3 and D2-7 (both members of the open cluster Danks 2) indicates that WR 48a is located at a distance of ~4 kpc from us. WR 48a is very likely a thermal radio source and for such a case and smooth (no clumps) wind its radio emission suggests a relatively high mass-loss rate of this dusty WR star (dM/dt = a few x 10^(-4) solar masses per year). Long timescale (years) variability of WR 48a is established in the optical, radio and X-rays. Colliding stellar winds likely play a very important role in the physics of this object. However, some LBV-like (luminous blue variable) activity could not be excluded as well.Comment: Accepted for publication in MNRAS; 16 pages, 16 figures, 6 table

    A Targeted Search for Peculiarly Red L and T Dwarfs in SDSS, 2MASS, and WISE: Discovery of a Possible L7 Member of the TW Hydrae Association

    Get PDF
    We present the first results from a targeted search for brown dwarfs with unusual red colors indicative of peculiar atmospheric characteristics. These include objects with low surface gravities or with unusual dust content or cloud properties. From a positional cross-match of SDSS, 2MASS, and WISE, we have identified 40 candidate peculiar early-L to early-T dwarfs that are either new objects or have not been identified as peculiar through prior spectroscopy. Using low-resolution spectra, we confirm that 10 of the candidates are either peculiar or potential L/T binaries. With a J − K_s color of 2.62 ± 0.15 mag, one of the new objects—the L7 dwarf 2MASS J11193254–1137466—is among the reddest field dwarfs currently known. Its proper motion and photometric parallax indicate that it is a possible member of the TW Hydrae moving group. If confirmed, it would be the lowest-mass (5–6 M_(Jup)) free-floating member. We also report a new T dwarf, 2MASS J22153705+2110554, that was previously overlooked in the SDSS footprint. These new discoveries demonstrate that despite the considerable scrutiny already devoted to the SDSS and 2MASS surveys, our exploration of these data sets is not yet complete

    Weather on Other Worlds. VI. Optical Spectrophotometry of Luhman 16B Reveals Large-amplitude Variations in the Alkali Lines

    Full text link
    Using a novel wide-slit, multiobject approach with the GMOS spectrograph on the 8 m Gemini South telescope, we have obtained precise time-series spectrophotometry of the binary brown dwarf Luhman 16 at optical wavelengths over two full nights. The B component of this binary system is known to be variable in the red optical and near-infrared with a period of 5 hr and an amplitude of 5%-20%. Our observations probe its spectrally resolved variability in the 6000-10000 Ã… range. At wavelengths affected by the extremely strong, broadened spectral lines of the neutral alkali metals (the potassium doublet centered near 7682 Ã… and the sodium doublet at 5893 Ã…), we see photometric variations that differ strikingly from those of the 8000-10000 Ã… "red continuum" that dominates our detected flux. On UT 2014 February 24, these variations are anticorrelated with the red continuum, while on February 25 they have a large relative phase shift. The extent to which the wavelength-dependent photometric behavior diverges from that of the red continuum appears to correlate with the strength of the alkali absorption. We consider but ultimately reject models in which our observations are explained by lightning or auroral activity. A more likely cause is cloud-correlated, altitude-dependent variations in the gas-phase abundances of sodium and potassium, which are in chemical equilibrium with their chlorides in brown dwarf atmospheres. Clouds could influence these chemical equilibria by changing the atmospheric temperature profile and/or through cloud particles acting as chemical catalysts

    An Automated tool to detect variable sources in the Vista Variables in the Vía Láctea Survey. The VVV Variables (V^4) catalog of tiles d001 and d002

    Get PDF
    27 pages, 19 figuresTime-varying phenomena are one of the most substantial sources of astrophysical information, and their study has led to many fundamental discoveries in modern astronomy. We have developed an automated tool to search for and analyze variable sources in the near-infrared K s band using the data from the VISTA Variables in the Vía Láctea (VVV) ESO Public Large Survey. This process relies on the characterization of variable sources using different variability indices calculated from time series generated with point-spread function (PSF) photometry of sources under analysis. In particular, we used two main indices, the total amplitude and the eta index η, to identify variable sources. Once the variable objects are identified, periods are determined with generalized Lomb-Scargle periodograms and the information potential metric. Variability classes are assigned according to a compromise between comparisons with VVV templates and the period of the variability. The automated tool is applied on VVV tiles d001 and d002 and led to the discovery of 200 variable sources. We detected 70 irregular variable sources and 130 periodic ones. In addition, nine open-cluster candidates projected in the region are analyzed, and the infrared variable candidates found around these clusters are further scrutinized by cross-matching their locations against emission star candidates from VPHAS+ survey H α color cuts.Peer reviewedFinal Accepted Versio

    Identifying and characterizing ultracool dwarfs ejected from post-encounter disintegrating systems

    Get PDF
    Disintegrating multiple systems have been previously discovered from kinematic studies of the Hipparcos\it Hipparcos catalogue. They are presumably the result of dynamical encounters taking place in the Galactic disk between single/multiple systems. In this paper, we aim to expand the search for such systems, to study their properties, as well as to characterize possible low-mass ejecta (i.e. brown dwarfs and planets). We have assembled a list of 15 candidate systems using astrometry from the Tycho-Gaia astrometric solution (later upgraded with Gaia\it Gaia DR3), and here we present the discovery and follow-up of 5 of them. We have obtained DECam imaging for all 5 systems and by combining near-infrared photometry and proper motion, we searched for ultra-cool ejected components. We find that the system consisting of TYC 7731-1951-1, TYC 7731-2128 AB, and TYC 7731-1995-1ABC?, contains one very promising ultra-cool dwarf candidate. Using additional data from the literature, we have found that 3 out of 5 disintegrating system candidates are likely to be true disintegrating systems.Comment: Accepted for publication in MNRAS. 17 pages, 8 figures, 4 table
    corecore