11 research outputs found

    Analysis of Three-Phase Thyristor Phase Control Circuit with Series RLC Elements

    Get PDF
    An ac phase control circuit by thyristor is widely used in industry, The characteristics of the singlephase circuit with series RLC elements are numerically analyzed, and is reported the interesting phenomenon of step-up voltage without transformer. However, the performance of three phase phase control circuit with series RLC elements is not made clear. In this paper, the performance of three-phase control circuit of a balanced and an unbalanced load with series RLC elements is described. The analytical programs with each load are developed, and it is clarified that the calculated by this analytical program agree well with the measured. The calculated results, e.g. waveforms, RMS values of voltage and current, power, and power factor are illustrated and discussed the step-up phenomenon in three phase

    Characterization of follistatin-related gene as a negative regulatory factor for activin family members during mouse heart development

    Get PDF
    Follistatin-related gene (FLRG) encodes a secretory glycoprotein that has characteristic cysteine-rich follistatin domains. FLRG protein binds to and neutralizes several transforming growth factor-β (TGF-β) superfamily members, including myostatin (MSTN), which is a potent negative regulator of skeletal muscle mass. We have previously reported that FLRG was abundantly expressed in fetal and adult mouse heart. In this study, we analyzed the expression of FLRG mRNA during mouse heart development. FLRG mRNA was continuously expressed in the embryonic heart, whereas it was very low in skeletal muscles. By contrast, MSTN mRNA was highly expressed in embryonic skeletal muscles, whereas the expression of MSTN mRNA was rather low in the heart. In situ hybridization and immunohistochemical analysis revealed that FLRG expressed in smooth muscle of the aorta and pulmonary artery, valve leaflets of mitral and tricuspid valves, and cardiac muscles in the ventricle of mouse embryonic heart. However, MSTN was expressed in very limited areas, such as valve leaflets of pulmonary and aortic valves, the top of the ventricular and atrial septa. Interestingly, the expression of MSTN was complementary to that of FLRG, especially in the valvular apparatus. Biochemical analyses with surface plasmon resonance biosensor and reporter assays demonstrated that FLRG hardly dissociates from MSTN and activin once it bound to them, and efficiently inhibits these activities. Our results suggest that FLRG could function as a negative regulator of activin family members including MSTN during heart development

    Prediction of soot formation characteristics in a pulverized-coal combustion field by large eddy simulations with the TDP model

    Get PDF
    In this study, the soot formation characteristics in a pulverized-coal combustion field formed by a 4 kW Central Research Institute of Electric Power Industry (CRIEPI) jet burner were predicted by large eddy simulation (LES) employing a tabulated-devolatilization-process model (TDP model) [N. Hashimoto et al., Combust. Flame 159 (2012) 353–366]. This model enables to take into account the effect of coal particle heating rate on coal pyrolysis. The coal-derived soot formation model proposed by Brown and Fletcher [A. L. Brown and T. H. Fletcher, Energy Fuels 12 (1998) 745–757] was employed in the LES. A comparison between the data predicted by LES and the soot volume fraction distribution data measured by laser induced incandescence confirmed that the soot formation characteristics in the coal combustion field of the CRIEPI burner can be accurately predicted by LES. A detailed analysis of the data predicted by LES showed that the soot particle distribution in this burner is narrow because the net soot formation rate is negative on both sides of the base of the soot volume fraction. At these positions, soot particles diffused from the peak position of soot volume fraction are oxidized due to a relatively high oxygen concentration. Finally, the effect of soot radiation on the predicted gas temperature distribution was examined by comparing the simulation results obtained with and without soot radiation. This comparison showed that the maximum gas temperature predicted by the simulation performed with soot radiation was over 100 K lower than that predicted by the simulation performed without soot radiation. From result strongly suggests the importance of considering a soot formation model for performing numerical simulations of a pulverized-coal combustion filed
    corecore