4,383 research outputs found

    Artifact Rejection Methodology Enables Continuous, Noninvasive Measurement of Gastric Myoelectric Activity in Ambulatory Subjects.

    Get PDF
    The increasing prevalence of functional and motility gastrointestinal (GI) disorders is at odds with bottlenecks in their diagnosis, treatment, and follow-up. Lack of noninvasive approaches means that only specialized centers can perform objective assessment procedures. Abnormal GI muscular activity, which is coordinated by electrical slow-waves, may play a key role in symptoms. As such, the electrogastrogram (EGG), a noninvasive means to continuously monitor gastric electrical activity, can be used to inform diagnoses over broader populations. However, it is seldom used due to technical issues: inconsistent results from single-channel measurements and signal artifacts that make interpretation difficult and limit prolonged monitoring. Here, we overcome these limitations with a wearable multi-channel system and artifact removal signal processing methods. Our approach yields an increase of 0.56 in the mean correlation coefficient between EGG and the clinical "gold standard", gastric manometry, across 11 subjects (pā€‰<ā€‰0.001). We also demonstrate this system's usage for ambulatory monitoring, which reveals myoelectric dynamics in response to meals akin to gastric emptying patterns and circadian-related oscillations. Our approach is noninvasive, easy to administer, and has promise to widen the scope of populations with GI disorders for which clinicians can screen patients, diagnose disorders, and refine treatments objectively

    The transcriptional activator ZNF143 is essential for normal development in zebrafish

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>ZNF143 is a sequence-specific DNA-binding protein that stimulates transcription of both small RNA genes by RNA polymerase II or III, or protein-coding genes by RNA polymerase II, using separable activating domains. We describe phenotypic effects following knockdown of this protein in developing <it>Danio rerio </it>(zebrafish) embryos by injection of morpholino antisense oligonucleotides that target znf143 mRNA.</p> <p>Results</p> <p>The loss of function phenotype is pleiotropic and includes a broad array of abnormalities including defects in heart, blood, ear and midbrain hindbrain boundary. Defects are rescued by coinjection of synthetic mRNA encoding full-length ZNF143 protein, but not by protein lacking the amino-terminal activation domains. Accordingly, expression of several marker genes is affected following knockdown, including GATA-binding protein 1 (<it>gata1</it>), cardiac myosin light chain 2 (<it>cmlc2</it>) and paired box gene 2a (<it>pax2a</it>). The zebrafish <it>pax2a </it>gene proximal promoter contains two binding sites for ZNF143, and reporter gene transcription driven by this promoter in transfected cells is activated by this protein.</p> <p>Conclusions</p> <p>Normal development of zebrafish embryos requires ZNF143. Furthermore, the <it>pax2a </it>gene is probably one example of many protein-coding gene targets of ZNF143 during zebrafish development.</p

    Analysis of human sarcospan as a candidate gene for CFEOM1

    Get PDF
    BACKGROUND: Congenital fibrosis of the extraocular muscles type 1 (CFEOM1) is an autosomal dominant eye movement disorder linked to the pericentromere of chromosome 12 (12p11.2 - q12). Sarcospan is a member of the dystrophin associated protein complex in skeletal and extraocular muscle and maps to human chromosome 12p11.2. Mutations in the genes encoding each of the other components of the skeletal muscle sarcospan-sarcoglycan complex (Ī± - Ī“ sarcoglycan) have been shown to cause limb girdle muscular dystrophy (LGMD2C-F). To determine whether mutations in the sarcospan gene are responsible for CFEOM1 we: (1) attempted to map sarcospan to the CFEOM1 critical region; (2) developed a genomic primer set to directly sequence the sarcospan gene in CFEOM1 patients; and (3) generated an anti-sarcospan antibody to examine extraocular muscle biopsies from CFEOM1 patients. RESULTS: When tested by polymerase chain reaction, sarcospan sequence was not detected on yeast or bacterial artificial chromosomes from the CFEOM1 critical region. Sequencing of the sarcospan gene in CFEOM1 patients from 6 families revealed no mutations. Immunohistochemical studies of CFEOM1 extraocular muscles showed normal levels of sarcospan at the membrane. Finally, sarcospan was electronically mapped to bacterial artificial chromosomes that are considered to be outside of the CFEOM1 critical region. CONCLUSIONS: In this report we evaluate sarcospan as a candidate gene for CFEOM1. We have found that it is highly unlikely that sarcospan is involved in the pathogenesis of this disease. As of yet no sarcospan gene mutations have been found to cause muscular abnormalities

    Continuous, Semi-discrete, and Fully Discretized Navier-Stokes Equations

    Full text link
    The Navier--Stokes equations are commonly used to model and to simulate flow phenomena. We introduce the basic equations and discuss the standard methods for the spatial and temporal discretization. We analyse the semi-discrete equations -- a semi-explicit nonlinear DAE -- in terms of the strangeness index and quantify the numerical difficulties in the fully discrete schemes, that are induced by the strangeness of the system. By analyzing the Kronecker index of the difference-algebraic equations, that represent commonly and successfully used time stepping schemes for the Navier--Stokes equations, we show that those time-integration schemes factually remove the strangeness. The theoretical considerations are backed and illustrated by numerical examples.Comment: 28 pages, 2 figure, code available under DOI: 10.5281/zenodo.998909, https://doi.org/10.5281/zenodo.99890

    The Extended Shapes of Galactic Satellites

    Full text link
    We are exploring the extended stellar distributions of Galactic satellite galaxies and globular clusters. For seven objects studied thus far, the observed profile departs from a King function at large r, revealing a ``break population'' of stars. In our sample, the relative density of the ``break'' correlates to the inferred M/L of these objects. We discuss opposing hypotheses for this trend: (1) Higher M/L objects harbor more extended dark matter halos that support secondary, bound, stellar ``halos''. (2) The extended populations around dwarf spheroidals (and some clusters) consist of unbound, extratidal debris from their parent objects, which are undergoing various degrees of tidal disruption. In this scenario, higher M/L ratios reflect higher degrees of virial non-equilibrium in the parent objects, thus invalidating a precept underlying the use of core radial velocities to obtain masses.Comment: 8 pages, including 2 figures Yale Cosmology Workshop: The Shapes of Galaxies and Their Halo

    Generalized molecular solvation in non-aqueous solutions by a single parameter implicit solvation scheme

    Get PDF
    In computer simulations of solvation effects on chemical reactions, continuum modeling techniques regain popularity as a way to efficiently circumvent an otherwise costly sampling of solvent degrees of freedom. As effective techniques, such implicit solvation models always depend on a number of parameters that need to be determined earlier. In the past, the focus lay mostly on an accurate parametrization of water models. Yet, non-aqueous solvents have recently attracted increasing atten- tion, in particular, for the design of battery materials. To this end, we present a systematic parametrization protocol for the Self-Consistent Continuum Solvation (SCCS) model resulting in optimized parameters for 67 non-aqueous solvents. Our parametrization is based on a collection of ā‰ˆ6000 experimentally measured partition coefficients, which we collected in the Solv@TUM database presented here. The accuracy of our optimized SCCS model is comparable to the well-known universal continuum solvation model (SMx) family of methods, while relying on only a single fit parameter and thereby largely reducing sta- tistical noise. Furthermore, slightly modifying the non-electrostatic terms of the model, we present the SCCS-P solvation model as a more accurate alternative, in particular, for aromatic solutes. Finally, we show that SCCS parameters can, to a good degree of accuracy, also be predicted for solvents outside the database using merely the dielectric bulk permittivity of the solvent of choice

    Magellanic Cloud Periphery Carbon Stars IV: The SMC

    Full text link
    The kinematics of 150 carbon stars observed at moderate dispersion on the periphery of the Small Magellanic Cloud are compared with the motions of neutral hydrogen and early type stars in the Inter-Cloud region. The distribution of radial velocities implies a configuration of these stars as a sheet inclined at 73+/-4 degrees to the plane of the sky. The near side, to the South, is dominated by a stellar component; to the North, the far side contains fewer carbon stars, and is dominated by the neutral gas. The upper velocity envelope of the stars is closely the same as that of the gas. This configuration is shown to be consistent with the known extension of the SMC along the line of sight, and is attributed to a tidally induced disruption of the SMC that originated in a close encounter with the LMC some 0.3 to 0.4 Gyr ago. The dearth of gas on the near side of the sheet is attributed to ablation processes akin to those inferred by Weiner & Williams (1996) to collisional excitation of the leading edges of Magellanic Stream clouds. Comparison with pre LMC/SMC encounter kinematic data of Hardy, Suntzeff, & Azzopardi (1989) of carbon stars, with data of stars formed after the encounter, of Maurice et al. (1989), and Mathewson et al. (a986, 1988) leaves little doubt that forces other than gravity play a role in the dynamics of the H I.Comment: 30 pages; 7 figures, latex compiled, 1 table; to appear in AJ (June 2000
    • ā€¦
    corecore