8 research outputs found

    DESALINATION DEVICE AND METHOD OF MANUFACTURING SUCH A DEVICE

    No full text
    A device (10) for capacitive deionization of an aqueous media containing dissolved ion species, said device comprising a cell with a first primary electrode (2) and a second primary electrode (3) arranged opposite the first primary electrode (2) and preferably separated by at least one non-conductive spacer (4, 4'). A third electrode (7) is arranged between the first and the second electrode. The third electrode (7) is grounded whereas the first and the second electrodes are polarized versus the grounded third electrode.QC 20190311</p

    DESALINATION DEVICE AND METHOD OF MANUFACTURING SUCH A DEVICE

    No full text
    A device (10) for capacitive deionization of an aqueous media containing dissolved ion species, said device comprising a cell with a first primary electrode (2) and a second primary electrode (3) arranged opposite the first primary electrode (2) and preferably separated by at least one non-conductive spacer (4, 4'). A third electrode (7) is arranged between the first and the second electrode. The third electrode (7) is grounded whereas the first and the second electrodes are polarized versus the grounded third electrode.QC 20190311</p

    Device for capacitive deionization of aqueous media and method of manufacturing such a device

    No full text
    The present disclosure relates to a device 10 for capacitive deionization of an aqueous media containing dissolved ion species. The device comprises a cell comprising a first primary electrode 2 and a second primary electrode 3 arranged opposite the first primary electrode 2 and preferably separated by at least one non-conductive spacer 4, 4'. A third electrode 7 is interposed between the first and the second electrode. The third electrode 7 is grounded whereas the first and the second electrodes are polarized versus the grounded third electrode. QC 20190311</p

    DESALINATION DEVICE AND METHOD OF MANUFACTURING SUCH A DEVICE

    No full text
    A device (10) for capacitive deionization of an aqueous media containing dissolved ion species, said device comprising a cell with a first primary electrode (2) and a second primary electrode (3) arranged opposite the first primary electrode (2) and preferably separated by at least one non-conductive spacer (4, 4'). A third electrode (7) is arranged between the first and the second electrode. The third electrode (7) is grounded whereas the first and the second electrodes are polarized versus the grounded third electrode.QC 20190311</p

    Device for capacitive deionization of aqueous media and method of manufacturing such a device

    No full text
    The present disclosure relates to a device 10 for capacitive deionization of an aqueous media containing dissolved ion species. The device comprises a cell comprising a first primary electrode 2 and a second primary electrode 3 arranged opposite the first primary electrode 2 and preferably separated by at least one non-conductive spacer 4, 4'. A third electrode 7 is interposed between the first and the second electrode. The third electrode 7 is grounded whereas the first and the second electrodes are polarized versus the grounded third electrode. QC 20190311</p

    Device for capacitive deionization of aqueous media and method of manufacturing such a device

    No full text
    The present disclosure relates to a device 10 for capacitive deionization of an aqueous media containing dissolved ion species. The device comprises a cell comprising a first primary electrode 2 and a second primary electrode 3 arranged opposite the first primary electrode 2 and preferably separated by at least one non-conductive spacer 4, 4'. A third electrode 7 is interposed between the first and the second electrode. The third electrode 7 is grounded whereas the first and the second electrodes are polarized versus the grounded third electrode. QC 20190311</p

    Enhanced Visible Light Photodegradation of Microplastic Fragments with Plasmonic Platinum/Zinc Oxide Nanorod Photocatalysts

    No full text
    Microplastics are persistent anthropogenic pollutants which have become a global concern owing to their widespread existence and unfamiliar threats to the environment and living organisms. This study demonstrates the degradation of fragmented microplastics particularly low-density polyethylene (LDPE) film in water, through visible light-induced plasmonic photocatalysts comprising of platinum nanoparticles deposited on zinc oxide (ZnO) nanorods (ZnO-Pt). The ZnO-Pt nanocomposite photocatalysts were observed to have better degradation kinetics for a model organic dye (methylene blue) compared to bare ZnO nanorods, attributed to the plasmonic effects leading to better interfacial exciton separation and improved hydroxyl radical activity along with a 78% increase in visible light absorption. These demonstrations of the plasmonically enhanced photocatalyst enabled it to effectively degrade microplastic fragments as confirmed following the changes in carbonyl and vinyl indices in infrared absorption. In addition, visual proof of physical surface damage of the LDPE film establishes the efficacy of using plasmonically enhanced nanocomposite photocatalytic materials to tackle the microplastic menace using just sunlight for a clean and green approach towards mitigation of microplastics in the ecosystem
    corecore