26 research outputs found

    The use of CORONA images in remote sensing of periglacial geomorphology: an illustration from the NE Siberian coast

    Get PDF
    CORONA images have been used for the mapping of periglacial features on the Bykovsky Peninsula and adjacent Khorogor Valley in northeast Siberia. Features, mapped and analysed within a geographical information system, include thermokarst depressions, thermo-erosional valleys, thermo-erosional cirques, thermokarst lakes, thermokarst lagoons and pingos. More than 50% of the area is strongly influenced by thermally-induced subsidence. Thermokarst in the area is probably less active today than in the early-middle Holocene

    Dinamika beregov vostochnykh arkticheskikh morej Rossii: osnovnye faktory, zakonomernosti i tendentsii (Dynamics of the Russian east Arctic sea coast: Major factors, regularities and tendencies)

    Get PDF
    Climatic, geocryological, geological and hydrodynamic conditions and available data on Arctic coast dynamics are analyzed. The basic laws of ice-rich coast development in varied geocryological and climatic conditions are investigated. Functional connections of coastal destructive cryogenic processes activity with summer air temperature and storms recurrence are revealed. The forecast of ice-rich coast rate retreat for the Laptev Sea and East-Siberian Sea is executed in connection with prospective changes of climate in XXI century

    Mineral associations of late Quaternary permafrost deposits - Bol’shoy Lyakhovsky Island compared to other locations in northern Siberia.

    Get PDF
    Bol’shoy Lyakhovsky Island has been a major focus area in Yedoma research in course of joint Russian-German expeditions in 1999, 2007 and 2014 conducted by colleagues from the Mel’nikov Permafrost Institute Yakutsk and the Alfred Wegener Institute Potsdam [1,2]. However, origins and genesis of periglacial deposits such as the late Pleistocene Yedoma Ice Complex are still debated [3] and referred to by some researchers as pure windblown sediments, while other researchers suggest more local sediment sources from intense nivation and periglacial weathering, or even a polygenetic origin under comparable cold-climatic, highly continental conditions in different regions. To disentangle sources and potential transport pathways of sediments, mineral associations are useful indicators. Identifying linkages of mineral associations in sediments to local bedrock, fluvial sources, or fare ranging sources for potential eolian transport are therefore important. Various studies on palaeoecology [4,5], stable isotopy [6], geophysics [7], biogeochemistry [8] and palaeogenetics [9] have been carried out over the last more than 20 years. In the present study, we analyzed the mineral associations in sediments of one of the best-dated permafrost sequences including the Yedoma Ice Complex exposed at the southern coast of Bol’shoy Lyakhovsky Island near the Zimov’e River mouth. The permafrost record spans about 200 ka covering the Marine Isotope Stages (MIS) 6 to MIS 1 [10,11,12,13,15], although not continuously. From these deposits, exposed from sea level to about 35 m above sea level, we studied heavy and light minerals of 65 samples from different cryostratigraphic horizons in both the 63-125 µm and the 125-250 µm fractions. The studied mineral grains used are subangular to slightly rounded. The heavy mineral associations are dominated by amphibole, epidote, pyroxene, titanite, ilmenite, garnet, zircon, apatite, and rutile. Leucoxene is found in several samples as well as biotite, chlorite and weathered micas. The light mineral association is dominated by feldspar, quartz, and chlorites. Carbonates, muscovite, and broken mica are observed in some samples. Differences in the heavy and light mineral associations represent varying sediment sources and transport mechanisms of the deposits aligned to the distinct cryostratigraphic horizons (Fig. 1). Characteristic associations of the different horizons are assessed using variance analysis on the counted mineral grains. Statistically significant (at 95% confidence level) distinct mineral associations are found with ilmenite, garnet, zircon, tourmaline, titanite, and leucoxene in the heavy minerals and feldspar in the light minerals. MIS 1 (Holocene thermokarst deposits) is the least distinctly separable unit in the heavy minerals, MIS 4 (Zyryan stadial floodplain deposits) and MIS 6 (Yukagir interstadial Ice Complex) are the most distinctly separable units. In the light minerals, MIS 2 (stadial Sartan Yedoma Ice Complex) is the least and MIS 4 the most distinctly separable unit. The MIS 3 (interstadial Molotkov Yedoma Ice Complex) and the MIS 5 (interglacial Kazantsev thermokarst deposits) units show intermediate separability in both heavy and light minerals. The Bol’shoy Lyakhovsky mineral associations were compared with other permafrost exposures on the Siberian mainland along the Laptev Sea coast [15,16,17], in the Lena Delta [18], and on other islands of the New Siberian Archipelago. Our findings suggest that weathered bedrock from nearby ridges and hills was the most likely source material for the formation of late Quaternary permafrost deposits. The local sediment sources are more in line with hypotheses for Yedoma Ice Complex genesis [19] that involve largely local erosion, transport, and deposition processes as opposed to eolian deposition involving regional to panarctic-scale movement of dust and larger grainsize particles. A B Fig. 1 Averages of heavy (A) and light (B) mineral associations of the 63-125 µm fraction according to the stratigraphy References 1. Andreev, A. et al. Weichselian and Holocene palaeoenvironmental history of the Bol’shoy Lyakhovsky Island, New Siberian Archipelago, Arctic Siberia, Boreas, 2009, 38(1), 72–110. 2. Andreev, A. et al. Late Saalian and Eemian palaeoenvironmental history of the Bol'shoy Lyakhovsky Island (Laptev Sea region, Arctic Siberia), Boreas, 2004, 33(4), 319-348. 3. Schirrmeister, L. et al. Yedoma: Late Pleistocene ice-rich syngenetic permafrost of Beringia, Encyclopedia of Quaternary Science, 2nd edition, 2013, 3, 542-552. 4. Kienast, F. et al. Continental climate in the East Siberian Arctic during the last interglacial: implications from palaeobotanical records, Global Planet. Change, 2008, 60(3/4), 535-562. 5. Sher, A.V. et al. New insights into the Weichselian environment and climate of the East Siberian Arctic, derived from fossil insects, plants, and mammals, Quat. Sci. Rev., 2005, 24, 533–569. 6. Meyer, H. et al. Paleoclimate reconstruction on Big Lyakhovsky Island, North Siberia - Hydrogen and oxygen isotopes in ice wedges, Permafrost Periglac. Process., 2002, 1, 91–105. 7. Schennen, S. et al. 3D GPR imaging of Ice Complex deposits in northern East Siberia, Geophysics, 2016, 81(1), WA185-WA192 8. Stapel, J.G. et al. Substrate potential of last interglacial to Holocene permafrost organic matter for future microbial greenhouse gas production, Biogeosciences, 2018, 15, 1969–1985. 9. Zimmermann, H.H. et al. The history of tree and shrub taxa on Bol’shoy Lyakhovsky Island (New Siberian Archipelago) since the last interglacial uncovered by sedimentary ancient DNA and pollen data, Genes, 2017, 8(10), E273 10. Wetterich, S. et al. Eemian and Late Glacial/Holocene palaeoenvironmental records from permafrost sequences at the Dmitry Laptev Strait (NE Siberia, Russia), Palaeogeogr. Palaeoclimatol. Palaeoecol., 2009, 27, 73-95. 11. Wetterich, S. et al. Last Glacial Maximum records in permafrost of the East Siberian Arctic, Quat. Sci. Rev., 2011, 30, 3139-3151. 12. Wetterich, S. et al. Ice Complex formation in arctic East Siberia during the MIS3 Interstadial, Quat. Sci. Rev., 2014, 84: 39-55. 13. Wetterich, S. et al. Ice Complex permafrost of MIS5 age in the Dmitry Laptev Strait coastal region (East Siberian Arctic), Quat. Sci. Rev., 2016, 147: 298-31 14. Wetterich, S. et al. Recurrent Ice Complex formation in arctic eastern Siberia since about 200 ka, Quat. Res., 2019, 92(2): 530-548. 15. Siegert, C. et al. The sedimentological, mineralogical and geochemical composition of late Pleistocene deposits from the ice complex on the Bykovsky peninsula, northern Siberia, Polarforschung, 2000, 70, 3-11. 16. Schirrmeister, L. et al. Paleoenvironmental and paleoclimatic records from permafrost deposits in the Arctic region of Northern Siberia, Quat. Int., 2002, 89, 97-118. 17. Schirrmeister, L. et al. Periglacial landscape evolution and environmental changes of Arctic lowland areas for the last 60,000 years (Western Laptev Sea coast, Cape Mamontov Klyk), Polar Research, 2008, 27(2), 249-272. 18. Schirrmeister; L. et al. ). Late Quaternary paleoenvironmental records from the western Lena Delta, Arctic Siberia, Palaeogeogr. Palaeoclimatol. Palaeoecol., 2011, 299, 175–196 19. Schirrmeister, L. et al. The genesis of Yedoma Ice Complex permafrost – grain-size endmember modeling analysis from Siberia and Alaska, E&G Quaternary Sci. J., 2020, 69, 33–5

    Heavy and light mineral association of late Quaternary permafrost deposits in Northeastern Siberia

    Get PDF
    We studied heavy and light mineral associations from two grain-size fractions (63–125 μm, 125–250 μm) from 18 permafrost sites in the northern Siberian Arctic in order to differentiate local versus regional source areas of permafrost aggradation on the late Quaternary time scale. The stratigraphic context of the studied profiles spans about 200 ka covering the Marine Isotope Stage (MIS) 7 to MIS 1. Heavy and light mineral grains are mostly angular, subangular or slightly rounded in the studied permafrost sediments. Only grains from sediments with significantly longer transport distances show higher degrees of rounding. Differences in the varying heavy and light mineral associations represent varying sediment sources, frost weathering processes, transport mechanisms, and postsedimentary soil formation processes of the deposits of distinct cryostratigraphic units. We summarized the results of 1141 microscopic mineral analyses of 486 samples in mean values for the respective cryostratigraphic units. We compared the mineral associations of all 18 sites along the Laptev Sea coast, in the Lena Delta, and on the New Siberian Archipelago to each other and used analysis of variance and cluster analysis to characterize the differences and similarities among mineral associations. The mineral associations of distinct cryostratigraphic units within several studied profiles differ significantly, while others do not. Significant differences between sites as well as between single cryostratigraphic units at an individual site exist in mineral associations, heavy mineral contents, and mineral coefficients. Thus, each study site shows individual, location-specific mineral association. The mineral records originate from multiple locations covering a large spatial range and show that ratios of heavy and light mineral loads remained rather stable over time, including glacial and interglacial periods. This suggests mostly local sediment sources and highlights the importance of sediment reworking under periglacial regimes through time, including for example the formation of MIS 1 thermokarst and thermo-erosional deposits based on remobilized MIS 3 and 2 Yedoma Ice Complex deposits. Based on the diverse mineralogical results our study supports the viewpoint that Yedoma Ice Complex deposits are mainly results of local and polygenetic formations (including local aeolian relocation) superimposed by cryogenic weathering and varying climate conditions rather than exclusive long distance aeolian transport of loess, which would have highly homogenized the deposits across large regions

    Permafrost Deep Organic Matter: The IPA Yedoma Action Group

    Get PDF
    Die Action Group "The Yedoma Region: A Synthesis of Circum-Arctic Distribution and Thickness" der Internationalen Permafrost Assoziation (IPA) hat es zum Ziel die Verbreitung und Mächtigkeit von Yedoma Permafrost, einem spätpleitozänen sehr eisreichem Permafrost, zu quantifizieren. Yedoma ist durch Eisgehalte von bis zu 80vol% sehr anfällig gegenüber Erwärmung. Denn wenn das Bodeneis schmilzt und abgeführt wird sind Absenkungen der Bodenoberflächen von mehr als 30 Metern möglich, was deutliche Auswirkungen hat auf die Landschaft, samt Infrastruktur und menschlicher Landnutzung. Als Produkt dieses Projektes möchten wir hier eine circum-arktische Karte präsentieren. Diese Daten werden als Grundlage dazu dienen, den Kohlenstoffpool von Yedoma Ablagerungen realistisch in computergestützte Modelle zu implementieren und die zukünftigen Auswirkungen von Thermokarst und Thermoerosion auf die Treibhausgasemissionen abzuschätzen

    Kohlenstoff in Permafrost – Quantifizierung der Menge an organischem Material in Sibirien

    Get PDF
    Permafrost in Sibirien taut, und das auf verschiedene Weise. Besonders gut sichtbar sind Küstenerosion und Bodenabsenkungen, oder wenn vorhandene Straßen, Häuser und andere Infrastruktur dadurch beschädigt wird. Doch auch eine Vertiefung der sommerlichen Auftauschicht und Entstehung von Seen, was zu schnellen Auftauprozessen (Thermokarst) führt, machen die Permafrostregion zu einer Region, in der der Klimawandel heute deutlich sichtbar wird

    Organic Matter Matters – Quantifying the Amount of Carbon in Northern Siberia

    Get PDF
    The Lena River Delta is underlain by permafrost. Thus, it is highly vulnerable to climate warming and may degrade in different ways, by shoreline erosion, land surface subsidence, deepening of the seasonal thawing front, and development of rapid thaw features such as lakes, gullies and landslides

    25 years of joint Yedoma Ice Complex studies in Arctic Russia, especially in Sakha/Yakutia

    Get PDF
    Since 1994, permafrost deposits of the Siberian Yedoma region have been in the focus of the joint Russian-German scientific cooperation in terrestrial Polar research (Figure 1). These studies focused on cryostratigraphic, geochemical, geochronological, and paleontological characteristics at more than 25 individual study sites of the late Pleistocene Yedoma Ice Complex in Siberia and provided a detailed insight into the paleoenvironments and paleoclimate for the westernmost part of Beringia. The multidisciplinary investigations resulted in new ideas and discussions in the ongoing scientific debate on the origin of Yedoma Ice Complex and the main periglacial processes involved in its formation (1,2,3). The Yedoma Ice Complex is an ice-rich type of permafrost deposit widely distributed across Beringia. The Ice Complex aggradation is mainly controlled by the growth of syngenetic ice wedge polygons contributing up to 60 vol% of the entire formation. The clastic sedimentation of ice-oversaturated Yedoma deposits with considerable organic matter content is further controlled by local conditions such as source rocks and periglacial weathering processes, paleotopography, and temporary surface stabilization with autochthonous peat growth and soil formation. Key processes include alluvial, fluvial, and niveo-aeolian transport (4) as well as accumulation in ponding waters and continued in-situ frost weathering over millennial time-scales. Important post-depositional processes affecting Yedoma deposits are solifluction, cryoturbation, and pedogenesis. Major joint Russian-German field studies were conducted on Taymyr Peninsula (5,6,7,8,9,10,11), along the western and central Laptev Sea coasts (12,13,14,15,16,17,18), in the Lena Delta (19,20,21,22), on islands of the New Siberian Archipelago (23,24,25,26,27,28), and the adjacent mainland (29). Further study sites were conducted in the Kolyma Lowland (30), the Yana Highlands (31,32), in the foothills of the Verkhoyan Mountains (33,34,35,36), and in Central Yakutia (37). Comprehensive sampling and further analytical work included not only the Yedoma Ice Complex itself but also included its stratigraphic context of older underlying sequences and younger overlying deposits. The latter often are subaerial or subaquatic deposits associated with late-Glacial to Holocene thermokarst dynamics that led to Yedoma degradation during the deglacial and Holocene warming of these regions (38,39,40). Figure 1: Joint Russian-German fieldwork sites in NE Siberia labeled with the year of expedition. Besides geomorphological and cryolithological studies, extensive paleo-ecological investigations were carried out on zoological (41,42,43,44,45) and botanic fossils (46,47,48,49,50,51) to derive quantitative and qualitative reconstructions late Pleistocene Beringian environments and climate conditions. New methods in geochronology were also tested (52,53,54,55). In addition to the sedimentary components of the frozen deposits, segregated ground ice and in particular the large syngenetic ice wedges of Yedoma Ice Complex were also studied as geochemical and stable isotope archives of paleoclimate (56,57,58, 59,60,61,62). In addition, a range of remote sensing methods in combination with GIS analyses (63,64,65) and geophysical surveys (66) were used for large-scale analyses of landscape changes associated with Yedoma Ice Complex degradation (67,68,69). In the last few years, an additional important focus has been on using modern biogeochemical methods of organic matter analysis to characterize the frozen organic matter in Yedoma Ice Complex deposits and for permafrost carbon pool calculations (70, 71,72,73,74,75,76,77) as well as microbiological studies (78) and genetic studies on fossil DNA (79,80). The rich body of scientific data and literature produced in Russian-German co-authorship within the more than 25 years of joint research on Yedoma Ice Complex represents an important cornerstone for understanding the Late Quaternary evolution of Siberian Yedoma regions, its role in the Earth System, and its feedbacks with climate and ecosystems. References 1. Schirrmeister, L., Dietze, E., Matthes, H., Grosse, G., Strauss, J., Laboor, S., Ulrich, M., Kienast, F., and Wetterich, S. (2020) The genesis of Yedoma Ice Complex permafrost – grain-size endmember modeling analysis from Siberia and Alaska, E&G Quaternary Sci. J., 69, 33–53, doi: 10.5194/egqsj-69-33-2020. 2. Schirrmeister, L., Froese, D., Tumskoy, V., Grosse,G., Wetterich, S. (2013.) Yedoma: Late Pleistocene ice-rich syngenetic permafrost of Beringia. In: Elias S.A. (ed.) The Encyclopedia of Quaternary Science 2nd edition, vol. 3, pp. 542-552. Amsterdam: Elsevier. 3. Schirrmeister, L., Kunitsky, V.V., Grosse, G., Wetterich, S., Meyer, H., Schwamborn, G., Babiy, O., Derevyagin, A.Y., and Siegert, C.: Sedimentary characteristics and origin of the Late Pleistocene Ice Complex on North-East Siberian Arctic coastal lowlands and islands - a review. Quaternary International 241, 3-25, doi: 10.1016/j.quaint.2010.04.004, 2011. 4. Kunitsky, V., Schirrmeister, L., Grosse, G., Kienast, F. (2002). Snow patches in nival landscapes and their role for the Ice Complex formation in the Laptev Sea coastal lowlands, Polarforschung, 70, 53-67, doi:10.2312/polarforschung.70.53. 5. Andreev, A. , Siegert, C. , Klimanov, V. A. , Derevyagin, A. Y. , Shilova, G. N. and Melles, M. (2002) Late Pleistocene and Holocene vegetation and climate changes in the Taymyr lowland, Northern Siberia Quaternary research, 57, pp. 138-150 . 6. Andreev, A. , Tarasov, P. E. , Siegert, C. , Ebel, T. , Klimanov, V. A. , Melles, M. , Bobrov, A. A. , Derevyagin, A. Y. , Lubinski, D. J. and Hubberten, H. W. (2003) Vegetation and climate changes on the northern Taymyr, Russia during the Upper Pleistocene and Holocene reconstructed from pollen records , Boreas, 32 (3), pp. 484-505 . 7. Chizhov, A. B. , Derevyagin, A. Y. , Simonov, E. F. , Hubberten, H. W. and Siegert, C. (1997) Isotopic composition of ground ice at the Labaz Lake region (Taymyr). Kriosfera Zemlii (Earth Cryoshere), 1, No 3, pp. 79-84 . (in Russian), 8. Derevyagin, A.Yu., Chizhov, A.B., Brezgunov, V.S., Siegert, C., Hubberten, H.-W., 1999.Isotopic composition of ice wedges of Cape Sabler (Lake Taymyr). Kriosfera Zemlii (Earth Cryosphere) 3/3, 41-49 (in Russian). 9. Kienast, F., Siegert, C., Dereviagin, A., Mai, H.D. Climatic implications of Late Quaternary plant macrofossil assemblages from the Taymyr Peninsula, Siberia, Global and Planetary Change, Volume 31, Issues 1–4, 265-281, 2001, https://doi.org/10.1016/S0921-8181(01)00124-2. 10. Kienel, U. , Siegert, C. and Hahne, J. (1999) Late Quarternary paeloenvironmental reconstruction from a permafrost sequence (Northsiberian Lowland, SE Taymyr Peninsula) - a multidisciplinary case study, Boreas, 28 (1), pp. 181-193 . 11. Siegert C., Derevyagin A.Y., Shilova G.N., Hermichen WD., Hiller A. (1999) Paleoclimatic Indicators from Permafrost Sequences in the Eastern Taymyr Lowland. In: Kassens H. et al. (eds) Land-Ocean Systems in the Siberian Arctic. Springer, Berlin, Heidelberg. 12. Bobrov, A.A., Müller, S., Chizhikova, N.A., Schirrmeister, L., Andreev, A.A.(2009).Testate Amoebae in Late Quaternary Sediments of the Cape Mamontov Klyk (Yakutia), Biology Bulletin, 36(4), 363-372. 13. Schirrmeister, L., Grosse, G., Kunitsky, V., Magens, D., Meyer, H., Dereviagin, A., Kuznetsova, T., Andreev, A., Babiy, O., Kienast, F., Grigoriev, M., Overduin, P.P., and Preusser, F.: Periglacial landscape evolution and environmental changes of Arctic lowland areas for the last 60,000 years (Western Laptev Sea coast, Cape Mamontov Klyk), Polar Research, 27(2), 249-272, doi: 10.1111/j.1751-8369.2008.00067.x, 2008. 14. Winterfeld, M., Schirrmeister, L., Grigoriev, M., Kunitsky, V.V., Andreev, A., and Overduin, P.P.: Permafrost and Landscape Dynamics during the Late Pleistocene, Western Laptev Sea Shelf, Siberia, Boreas 40(4), 697–713, doi: 10.1111/j.1502-3885.2011.00203.x, 2011. 15. Siegert, C., Schirrmeister, L., and Babiy, O.: The sedimentological, mineralogical and geochemical composition of late Pleistocene deposits from the ice complex on the Bykovsky peninsula, northern Siberia, Polarforschung, 70, 2000, 3-11, doi: 10.2312/polarforschung.70.3, 2002. 16. Schirrmeister, L., Siegert, C., Kuznetsova, T., Kuzmina, S., Andreev, A.A., Kienast, F., Meyer, H., and Bobrov, A.A.: Paleoenvironmental and paleoclimatic records from permafrost deposits in the Arctic region of Northern Siberia, Quaternary International, 89, 97-118, doi: 10.1016/S1040-6182(01)00083-0, 2002. 17. Schirrmeister, L., Siegert, C., Kunitzky, V.V., Grootes, P.M., and Erlenkeuser, H.: Late Quaternary ice-rich permafrost sequences as a paleoenvironmental archive for the Laptev Sea Region in northern Siberia, International Journal of Earth Sciences, 91, 154-167, doi: 10.1007/s005310100205, 2002. 18. Schirrmeister, L., Schwamborn, G., Overduin, P.P., Strauss, J., Fuchs, M.C., Grigoriev, M., Yakshina, I., Rethemeyer, J., Dietze, E., and Wetterich, S.: Yedoma Ice Complex of the Buor Khaya Peninsula (southern Laptev Sea), Biogeosciences 14, 1261-1283, doi: 10.5194/bg-14-1261-2017, 2017. 19. Schirrmeister, L., Kunitsky, V.V., Grosse, G., Schwamborn, G., Andreev, A.A., Meyer, H., Kuznetsova, T., Bobrov, A., and Oezen, D.: Late Quaternary history of the accumulation plain north of the Chekanovsky Ridge (Lena Delta, Russia) - a multidisciplinary approach, Polar Geography, 27(4), 277-319, doi: 10.1080/789610225, 2003. 20. Schirrmeister, L., Grosse, G. Schnelle, M., Fuchs, M., Krbetschek, M., Ulrich, M., Kunitsky, V., Grigoriev, M., Andreev, A. Kienast, F., Meyer, H., Klimova, I., Babiy, O., Bobrov, A., Wetterich, S., and Schwamborn, G.: Late Quaternary paleoenvironmental records from the western Lena Delta, Arctic Siberia, Palaeogeography, Palaeoclimatology, Palaeoecology 299, 175–196, doi: 10.1016/j.quascirev.2009.11.017, 2011. 21. Schwamborn, G., Rachold, V., and Grigoriev, M.N.: Late Quaternary sedimentation history of the Lena Delta, Quaternary International 89, 119–134, doi: 10.1016/S1040-6182(01)00084-2, 2002. 22. Wetterich, S., Kuzmina, S., Andreev, A.A., Kienast, F., Meyer, H., Schirrmeister, L., Kuznetsova, T., and Sierralta, M.: Palaeoenvironmental dynamics inferred from late Quaternary permafrost deposits on Kurungnakh Island, Lena Delta, Northeast Siberia, Russia, Quaternary Science Reviews, 27, 1523-1540, doi: 10.1016/j.quascirev.2008.04.007, 2008. 23. Andreev, A.A., Grosse, G., Schirrmeister, L., Kuzmina, S.A., Novenko, E.Yu., Bobrov, A.A., Tarasov, P. E., Kuznetsova, T.V., Krbetschek, M., Meyer, H., and Kunitsky, V.V.: Late Saalian and Eemian palaeoenvironmental history of the Bol'shoy Lyakhovsky Island (Laptev Sea region, Arctic Siberia), Boreas 33(4), 319-348, doi:10.1080/03009480410001974, 2004. 24. Andreev, A., Grosse, G., Schirrmeister, L., Kuznetsova, T.V., Kuzmina, S.A., Bobrov, A.A., Tarasov, P.E., Novenko, E.Yu., Meyer, H., Derevyagin, A.Yu., Kienast, F., Bryantseva, A., and Kunitsky, V.V.: Weichselian and Holocene palaeoenvironmental history of the Bol’shoy Lyakhovsky Island, New Siberian Archipelago, Arctic Siberia, Boreas 38(1), 72–110, doi: 10.1111/j.1502-3885.2008.00039.x, 2009. 25. Wetterich, S., Rudaya, N., Meyer, H., Opel, T., and Schirrmeister, L.: Last Glacial Maximum records in permafrost of the East Siberian Arctic, Quaternary Science Reviews 30, 3139-3151, doi: 10.1016/j.quascirev.2011.07.020, 2011. 26. Wetterich, S., Rudaya, N., Andreev, A.A., Opel, T., Schirrmeister, L., Meyer, H., and Tumskoy, V.: Ice Complex formation in arctic East Siberia during the MIS3 Interstadial, Quaternary Science Reviews 84: 39-55, doi:. 10.1016/j.quascirev.2013.11.009, 2014. 27. Wetterich, S.; Tumskoy:V.E., Rudaya, N., Kuznetsov, V., Maksimov, F., Opel T. , Meyer H., Andreev, A.A., Schirrmeister, L (2016) Ice Complex permafrost of MIS5 age in the Dmitry Laptev Strait coastal region (East Siberian Arctic). Quaternary Science Reviews, 147:298-31, doi.org/10.1016/j.quascirev.2015.11.016. 28. Wetterich, S., Rudaya, N., Kuznetsov V., Maksimov, F., T. Opel, Meyer, H., Guenther, F., Bobrov, A., Raschke, E., Zimmermann, H., Strauss, J., Fuchs, M.C., Schirrmeister, L. (2019) Recurrent Ice Complex formation in arctic eastern Siberia since about 200 ka. Quaternary Research 92 (2); 530-548, doi.org/10.1017/qua.2019.6. 29. Wetterich, S., Schirrmeister, L., Andreev A. A., Pudenz, M., Plessen, B, Meyer, H., Kunitsky, V. V. (2009). Eemian and Late Glacial/Holocene palaeoenvironmental records from permafrost sequences at the Dmitry Laptev Strait (NE Siberia, Russia), Palaeogeography, Palaeoclimatology, Palaeoecology 279: 73-95 doi:10.1016/j.palaeo.2009.05.002. 30. Strauss, J., Schirrmeister, L., Wetterich, S., Borchers, A, and Davydov S.P.: Grain-size properties and organic-carbon stock of Yedoma Ice Complex permafrost from the Kolyma lowland, northeastern Siberia. GBC. 26: GB3003, doi: 10.1029/2011GB004104, 2012. 31. Ashastina, K., Schirrmeister, L., Fuchs M., and Kienast F.: Palaeoclimate characteristics in interior Siberia of MIS 6–2: first insights from the Batagay permafrost mega-thaw slump in the Yana Highlands, Clim. Past, 13, 795–818, doi: 10.5194/cp-13-795-2017, 2017. 32. Kunitsky, V.V., Syromyatnikov, I.I., Schirrmeister, L., Skachkov, Yu.B., Grosse, G., Wetterich, S., and Grigoriev, M.N.: Ice-rich permafrost and thermal denudation in the Kirgillyakh area, Kriosfera Zemli. 17(1), 56-68, 2013 (in Russian). 33. Popp, S., Diekmann,B., Meyer, H., Siegert, C.,Syromyatnikov, I., Hubberten, H.-W. Palaeoclimate Signals as Inferred from Stable-isotope Composition of Ground Ice in the Verkhoyansk Foreland, Central Yakutia. Permafrost and Periglac. Process. 17: 119–132 (2006) DOI: 10.1002/ppp.556 34. Popp, S., Belolyubsky, I., Lehmkuhl, F., Prokopiev, A., Siegert, C., Spektor, V., Stauch, G., Diekmann,B. Sediment provenance of late Quaternary morainic, fluvialand loess-like deposits in the southwestern VerkhoyanskMountains (eastern Siberia) and implications for regionalpalaeoenvironmental reconstructions. Geol. J.42: 477–497 (2007), DOI: 10.1002/gj.1088 35. Siegert, C. , Sergeyenko, A. I. and Schirrmeister, L. (2017) Late Quaternary Deposits of the Northern Verkhoyansk Mountains: Geochronology and Questions of their Genesis (in Russian), Bulletin of the Commission for Study of the Quaternary = БЮЛЛЕТЕНЬ КОМИССИИ ПО ИЗУЧЕНИЮ ЧЕТВЕРТИЧНОГО ПЕРИОДА, 75 , pp. 100-112 . 36. Siegert, C. , Stauch, G. , Lehmkuhl, F. , Sergeyenko, A. I. , Diekmann, B. , Popp, S. and Belolyubsky, I. N. (2007) Development of glaciation in the Verkhoyansk Range and its foreland during the Pleistocene: Results of new investigations., Regionalnaya Geologiya i Metallogeniya (Regional Geology and Metallogeny), No. 30-31(in Russian)., 222 . 37. Ulrich, M., Morgenstern, A., Günther, F., Reiss, D. Bauch, K. E., Hauber, E., Rössler, S. and Schirrmeister, L. (2010) Thermokarst in Siberian ice-rich permafrost: Comparison to asymmetric scalloped depressions on Mars, Journal of Geophysical Research, 115, E10009 . doi:10.1029/2010JE003640 , 38. Morgenstern, A. , Grosse, G. , Günther, F. , Fedorova, I. and Schirrmeister, L. (2011): Spatial analyses of thermokarst lakes and basins in Yedoma landscapes of the Lena Delta. The Cryosphere, 5(4), 849–867, doi:10.5194/tc-5-849-2011. 39. Morgenstern, A. , Ulrich, M. , Günther, F. , Roessler, S. , Fedorova, I. V. , Rudaya, N. A. , Wetterich, S. , Boike, J. and Schirrmeister, L. (2013). Evolution of thermokarst in East Siberian ice-rich permafrost: A case study, Geomorphology, 201 , 363-379. doi:10.1016/j.geomorph.2013.07.011 40. Biskaborn, B. , Herzschuh, U. , Bolshiyanov, D. Y. , Schwamborn, G. and Diekmann, B. (2013) Thermokarst Processes and Depositional Events in a Tundra Lake, Northeastern Siberia, Permafrost and Periglac. Process.24: 160–174 doi:https://doi.org/10.1002/ppp.1769, 41. Kuznetsova, T. V. , Sulerzhitsky, L. D. , Andreev, A. , Siegert, C. , Schirrmeister, L. and Hubberten, H. W. (2003) Influence of Late Quaternary paleoenvironmental conditions on the distribution of mammals fauna in the Laptev Sea region , Occasional Papers in Earth Sciences, 5 , pp. 58-60 . 42. Kuznetsova T.V., Tumskoy V.E., Schirrmeister L., Wetterich S., (2019.) Paleozoological characteristics of the Late Neo-Pleistocene - Holocene sediments of Bykovsky Peninsula, Northern Yakutia (Палеозоологическая характеристика поздненеоплейстоценовых – голоценовых отложений Быковского Полуострова (Северная Якутия). Zoological Journal 98(11), 1268-1290. Special issue in honor of Andrey Sher. (in Russian) doi: 10.1134/S0044513419110102. 43. Bobrov, A. A. , Andreev, A. , Schirrmeister, L. and Siegert, C. (2004) Testate amoebae (Protozoa: Testacea) as bioindicators in the Late Quaternary deposits of the Bykovsky Peninsula, Laptev Sea, Russia , Palaeogeography palaeoclimatology palaeoecology, 209 , pp. 165-181 . doi:https://doi.org/10.1016/J.PALAEO.2004.02.012 44. Wetterich, S., Schirrmeister, L., Pietrzeniuk, E. (2005). Freshwater ostracodes in Quaternary permafrost deposits from the Siberian Arctic, Journal of Paleolimnology, 34, 363-376. doi:10.1007/s10933-005-5801-y 45. Müller, S., Bobrov, A. A., Schirrmeister, L., Andreev, A. A., Tarasov, P. E. (2009). Testate amoebae record from the Laptev Sea coast and its implication for the reconstruction of Late Pleistocene and Holocene environments in the Arctic Siberia, Palaeogeography, Palaeoclimatology, Palaeoecology 271(3-4), 301-315. doi:10.1016/j.palaeo.2008.11.003 46. Andreev, A.A., Schirrmeister, L., Siegert, C., Bobrov, A.A., Demske, D., Seiffert, M., Hubberten, H.-W. (2002). Paleoenvironmental changes in Northeastern Siberia during the Late Quaternary - evidence from pollen records of the Bykovsky Peninsula, Polarforschung, 70, 13-25, doi:10.2312/polarforschung.70.13. 47. Andreev, A.A.; Schirrmeister, L.; Tarasov , P.E.; Ganopolski , A.; Brovkin V.; Siegert, C.; Hubberten, H.-W. (2011). Vegetation and climate history in the Laptev Sea region (arctic Siberia) during Late Quaternary inferred from pollen records. Journal of Quaternary science reviews. 30, 2182-2199 doi:10.1016/j.quascirev.2010.12.026. 48. Kienast, F. , Schirrmeister, L. , Siegert, C. and Tarasov, P. (2005) Palaeobotanical evidence for warm summers in the East Siberian Arctic during the last cold stage, Quaternary Research, 63 (3), pp. 283-300. doi:https://doi.org/10.1016/j.yqres.2005.01.003 , 49. Kienast, F., Tarasov, P., Schirrmeister, L., Grosse, G., Andreev, A.A. (2008). Continental climate in the East Siberian Arctic during the last interglacial: implications from palaeobotanical records, Global and Planetary Change, 60(3/4), 535-562. doi:10.1016/j.gloplacha.2007.07.004 50. Kienast, F., Wetterich, S., Kuzmina, S., Schirrmeister, L., Andrev, A., Tarasov, P., Nazarova, L., Kossler, A., Frolova, A., Kunitsky, V. V.(2011) Paleontological records indicate the occurrence of open woodlands in a dry inland climate at the present-day Arctic coast in western Beringia during the last interglacial. Quaternary Science Reviews 30: 2134-2159, doi:10.1016/j.quascirev.2010.11.024. 51. Palagushkina, O.V., Wetterich, S., Schirrmeister, L., Nazarova, L.B. (2017) Modern and fossil diatom assemblages from Bol'shoy Lyakhovsky Island (New Siberian Archipelago, Arctic Siberia). Contemporary Problems of Ecology, 10, (4), 380–394. doi: 10.1134/S1995425517040060. 52. Gilichinsky, D. A. , Nolte, E., Basilyan, A.E., Beer, J., Blinov, A., Lazarev, V., Kholodov, A., Meyer, H., Nikolsky, P.A., Schirrmeister, L., Tumskoy, V. (2007). Dating of syngenetic ice wedges in permafrost with 36Cl and 10Be, Quaternary science reviews. 26, 1547-1556. doi:10.1016/j.quascirev.2007.04.004 53. Blinov A.V., Beer J., Tikhomirov D.A., Schirrmeister L., Meyer H., Abramov A.A., Basylyan A.E., Nikolskiy P.A., Tumskoy V.E., Kholodov A.L., Gilichinsky D.A. (2009) Permafrost dating with the cosmogenic radionuclides ( Report 1) (= Датирование многолетнемерзлых пород с помощью космогенных радионуклидов (сообщение 1). Kriosfera Zemli 13,( 2), 3-15 (in Russian). 54. Blinov, A., Alfimov, V., Beer, J., Gilichinsky, D., Schirrmeister, L., Kholodov, A., Nikolskiy, P., Opel, T., Tikhomirov, D., Wetterich, S.(2009).36Cl/Cl ratio in ground ice of East Siberia and its application for chronometry, Geochemistry, Geophysics, Geosystems (G3). 10(1), doi: 10.1029/2009GC002548. 55. Schirrmeister, L., Oezen, D., Geyh, M.A. (2002). 230Th/U dating of frozen peat, Bol'shoy Lyakhovsky Island (North Siberia), Quaternary research, 57, 253-258. doi:10.1006/qres.2001.2306. 56. Meyer, H. , Derevyagin, A. Y. , Siegert, C. and Hubberten, H. W. (2002) Paleoclimate studies on Bykovsky Peninsula, North Siberia - hydrogen and oxygen isotopes in ground ice , Polarforschung 70:, pp. 37-51 . 57. Derevyagin, A. Y., Chizhov, A. , Meyer, H. , Opel, T. , Schirrmeister, L. and Wetterich, S. (2013). Isotopic composition of texture ices, Laptev Sea coast , Kriosfera Zemlii (Earth Cryosphere), XVII (3), pp. 27-34 (in Russian). 58. Meyer, H. , Derevyagin, A. Y. , Siegert, C. , Schirrmeister, L. and Hubberten, H. W. (2002) Paleoclimate reconstruction on Big Lyakhovsky Island, North Siberia - Hydrogen and oxygen isotopes in ice wedges , Permafrost and periglacial processes, 13 , pp. 91-105 . 59. Opel, T., Dereviagin, A., Meyer, H., Schirrmeister, L., Wetterich, S. (2010).Paleoclimatic information from stable water isotopes of Holocene ice wedges at the Dmitrii Laptev Strait (Northeast Siberia), Permafrost and Periglacial Processes. 22 (1), 84-100, doi:10.1002/ppp.667. 60. Opel, T., Wetterich, S., Meyer, H., Dereviagin, A.Yu., Fuchs, M.C., and Schirrmeister, L.: Ground-ice stable isotopes and cryostratigraph

    Response of Permafrost Thermal State to Global Climatic Change in Urbanised Landscapes, Yakutsk, Russia

    No full text
    A study was undertaken to investigate the structure and condition of urban permafrost in the city of Yakutsk. The response of permafrost to recent climate change was assessed for a Shergin Shaft site in a cryogenic landscape. The results indicate that the thickness of the active layer which consists of anthropogenic soils experienced no change during the second half of the 20th century and the early 21st century. However, the thermal state of the underlying alluvial sediments has changed significantly in response to the warming of the climate. The permafrost temperatures at a depth of 10 m increased by about 3 °C between 1934 and 2015
    corecore