123 research outputs found

    The moon: An abundant source of clean and safe fusion fuel for the 21st century

    Get PDF
    It is shown how helium-3 can be obtained from the moon and how its use in fusion reactors can benefit the inhabitants of this planet. The physics and technology issues associated with the use of He-3 is addressed. A description is given of He-3 distribution on the moon and of methods which could be used to retrieve it

    Analysis of the financial factors governing the profitability of lunar helium-3

    Get PDF
    Financial factors influencing the profitability of the mining and utilization of lunar helium-3 are examined. The analysis addressed the following questions: (1) which financial factors have the greatest leverage on the profitability of He-3; (2) over what range can these factors be varied to keep the He-3 option profitable; and (3) what ultimate effect could this energy source have on the price of electricity for U.S. consumers. Two complementary methods of analysis were used in the assessment: rate of return on incremental investment required and reduction revenue requirements (total cost to customers) achieved. Some of the factors addressed include energy demand, power generation costs with and without fusion, profitability for D-He(3) fusion, annual capital and operating costs, launch mass and costs, He-3 price, and government funding. Specific conclusions are made with respect to each of the companies considered: utilities, lunar mining company, and integrated energy company

    Potential of derived lunar volatiles for life support

    Get PDF
    The lunar regolith contains small quantities of solar wind implanted volatile compounds that have vital, basic uses for maintaining life support systems of lunar or space settlements. Recent proposals to utilize the helium-3 isotope (He-3) derived from the lunar regolith as a fuel for fusion reactors would result in the availability of large quantities of other lunar volatile compounds. The quantities obtained would provide the annual life support replacement requirements of 1150 to 23,000 inhabitants per ton of He-3 recovered, depending on the volatile compound. Utilization of the lunar volatile compounds for life support depends on the costs, in terms of materials and energy, associated with their extraction from the lunar regolith as compared to the delivery costs of these compounds from Earth resources. Considering today's conservative estimated transportation costs (10,000dollarsperkilogram)andregolithminingcosts(10,000 dollars per kilogram) and regolith mining costs (5 dollars per ton), the life support replacement requirements could be more economically supplied by recovering the lunar volatile compounds than transporting these materials from Earth resources, even before He-3 will be utilized as a fusion fuel. In addition, availability of lunar volatile compounds could have a significant cost impact on maintaining the life support systems of the space station and a Mars base

    Fusion energy from the Moon for the twenty-first century

    Get PDF
    It is shown in this paper that the D-He-3 fusion fuel cycle is not only credible from a physics standpoint, but that its breakeven and ignition characteristics could be developed on roughly the same time schedule as the DT cycle. It was also shown that the extremely low fraction of power in neutrons, the lack of significant radioactivity in the reactants, and the potential for very high conversion efficiencies, can result in definite advantages for the D-He-3 cycle with respect to DT fusion and fission reactors in the twenty-first century. More specifically, the D-He-3 cycle can accomplish the following: (1) eliminate the need for deep geologic waste burial facilities and the wastes can qualify for Class A, near-surface land burial; (2) allow 'inherently safe' reactors to be built that, under the worst conceivable accident, cannot cause a civilian fatality or result in a significant (greater than 100 mrem) exposure to a member of the public; (3) reduce the radiation damage levels to a point where no scheduled replacement of reactor structural components is required, i.e., full reactor lifetimes (approximately 30 FPY) can be credibly claimed; (4) increase the reliability and availability of fusion reactors compared to DT systems because of the greatly reduced radioactivity, the low neutron damage, and the elimination of T breeding; and (5) greatly reduce the capital costs of fusion power plants (compared to DT systems) by as much as 50 percent and present the potential for a significant reduction on the COE. The concepts presented in this paper tie together two of the most ambitious high-technology endeavors of the twentieth century: the development of controlled thermonuclear fusion for civilian power applications and the utilization of outer space for the benefit of mankind on Earth

    Advanced power sources for space missions

    Get PDF
    Approaches to satisfying the power requirements of space-based Strategic Defense Initiative (SDI) missions are studied. The power requirements for non-SDI military space missions and for civil space missions of the National Aeronautics and Space Administration (NASA) are also considered. The more demanding SDI power requirements appear to encompass many, if not all, of the power requirements for those missions. Study results indicate that practical fulfillment of SDI requirements will necessitate substantial advances in the state of the art of power technology. SDI goals include the capability to operate space-based beam weapons, sometimes referred to as directed-energy weapons. Such weapons pose unprecedented power requirements, both during preparation for battle and during battle conditions. The power regimes for these two sets of applications are referred to as alert mode and burst mode, respectively. Alert-mode power requirements are presently stated to range from about 100 kW to a few megawatts for cumulative durations of about a year or more. Burst-mode power requirements are roughly estimated to range from tens to hundreds of megawatts for durations of a few hundred to a few thousand seconds. There are two likely energy sources, chemical and nuclear, for powering SDI directed-energy weapons during the alert and burst modes. The choice between chemical and nuclear space power systems depends in large part on the total duration during which power must be provided. Complete study findings, conclusions, and eight recommendations are reported

    Some experimental considerations regarding ion beam simulation of neutron irradiation for mechanical property measurements

    Full text link
    A preliminary assessment of the requirements for mechanical property data related to CTR materials is given. The status of ion simulation for mechanical property measurements is described. A damage analysis and calculations for light ions are presented along with sample size, heating and cooling, and surface considerations. (MOW

    Lunar resources: a review

    Get PDF
    There is growing interest in the possibility that the resource base of the Solar System might in future be used to supplement the economic resources of our own planet. As the Earth’s closest celestial neighbour, the Moon is sure to feature prominently in these developments. In this paper I review what is currently known about economically exploitable resources on the Moon, while also stressing the need for continued lunar exploration. I find that, although it is difficult to identify any single lunar resource that will be sufficiently valuable to drive a lunar resource extraction industry on its own (notwithstanding claims sometimes made for the 3He isotope, which are found to be exaggerated), the Moon nevertheless does possess abundant raw materials that are of potential economic interest. These are relevant to a hierarchy of future applications, beginning with the use of lunar materials to facilitate human activities on the Moon itself, and progressing to the use of lunar resources to underpin a future industrial capability within the Earth-Moon system. In this way, gradually increasing access to lunar resources may help ‘bootstrap’ a space-based economy from which the world economy, and possibly also the world’s environment, will ultimately benefit
    • …
    corecore