5 research outputs found
Intra- and Out-of-Vehicle Channel Measurements and Modeling
DisertaÄŤnĂ práce je zaměřena na měřenĂ a modelovánĂ kanálu uvnitĹ™ a vnÄ› vozidla pro komunikaci a lokalizaci. Pro účely vytvoĹ™enĂ integrovanĂ©ho inteligentnĂho dopravnĂho systĂ©mu ITS (Intelligent transportation system) je dĹŻleĹľitĂ˝ odhad vlastnosti kanálĹŻ pro vnitĹ™nĂ a venkovnĂ scĂ©náře. Za tĂmto účelem je vhodnĂ© provĂ©st Ĺ™adu ÄŤinnostĂ, kterĂ© jsou obsahem disertaÄŤnĂ práce: Simulace fyzickĂ© vrstvy 802.11p, jejĂ srovnávánĂ s 802.11a, měřenĂ kanálu pro rĹŻznĂ© scĂ©náře pro 802.11p a pro širokopásmovĂ˝ systĂ©m (UWB), vytvoĹ™enĂ modelĹŻ kanálĹŻ pro 802.11p a UWB a vĂ˝zkum vlastnostĂ lokalizace zaloĹľenĂ© na měřenĂ v pásmu UWB. VĂ˝zkum komunikace vozidla s okolĂm zaloĹľená na IEEE 802.11p standardu. JednĂm z cĂlĹŻ disertaÄŤnĂ práce je ukázat rozdĂly mezi standardy fyzickĂ© vrstvy IEEE 802.11a a IEEE 802.11p prostĹ™ednictvĂm simulace s pouĹľitĂm modelu kanálu HIPERPLAN/2. V práci je uvedena simulace pĹ™enosu signálu 802.11p kanálem ITU-R M.1225 s odlišnĂ˝m zpoĹľdÄ›nĂm a stĹ™ednĂm vĂ˝konem (pro chodce a vozidla). Vliv kanálu na signál je analyzován za pouĹľitĂ simulace v prostĹ™edĂ MATLABu pomocĂ vyhodnocenĂ chybovosti. UrÄŤenĂ vlastnostĂ kanálĹŻ v kmitoÄŤtovĂ©m pásmu 5,8 GHz pro standard IEEE 802.11p a UWB. Experimenty byly provádÄ›ny pro vnitĹ™nĂ a vnÄ›jšà prostĹ™edĂ vozidla. Bylo zjištÄ›no, Ĺľe pro protokol 802.11p mĹŻĹľe bĂ˝t trend (dlouhodobĂ˝ vĂ˝voj) profilu PDP (power delay profile) nejlĂ©pe aproximován pomocĂ modelu obsahujĂcĂho dvÄ› klesajĂcĂ exponenciálnĂ funkce, na rozdĂl od Saleh-Valenzuelova (S-V) modelu, kterĂ˝ je vĂce vhodnĂ˝ pro UWB systĂ©my pracujĂcĂ v pásmu 3 aĹľ 11 GHz. VytvoĹ™enĂ odpovĂdajĂcĂ impulznĂ odezvy (CIR) s vyuĹľitĂm trendu PDP. Informace o CIR byla pouĹľita pro simulaci 802.11p za účelem vyhodnocenĂ chybovosti pĹ™i pouĹľitĂ Ricianova modelu. VĂ˝sledky odhadu BER ukazujĂ vhodnost protokolu pro vnitĹ™nĂ a vnÄ›jšà prostĹ™edĂ bezdrátovĂ˝ch aplikacĂ. VĂ˝sledky simulacĂ dále ukazujĂ, Ĺľe se chybovost zásadnÄ› nemÄ›nĂ a proto je moĹľnĂ© urÄŤit stĹ™ednĂ kĹ™ivku BER pro celou sadu změřenĂ˝ch dat. UrÄŤenĂ vlivu malĂ© zmÄ›ny polohy antĂ©ny na vlastnosti kanálu. Práce ukazuje náhodnost parametrĹŻ UWB kanálu pro malĂ© zmÄ›ny polohy antĂ©ny okolo vozidla, zaparkovanĂ©ho v podzemnĂ garáži. Ztráty šĂĹ™enĂm jsou monotĂłnnÄ› rostoucĂ se vzdálenostĂ, avšak náhodnÄ› se mÄ›nĂ v závislosti na Ăşhlu a výšce antĂ©n, a proto je vyhodnocenĂ vzdálenosti pomocĂ sĂly signálu pro tyto scĂ©náře nevhodnĂ©. Na druhĂ© stranÄ› mĹŻĹľe bĂ˝t pro spolehlivĂ© urÄŤenĂ vzdálenosti bez ohledu na Ăşhel nebo výšku antĂ©ny pouĹľita doba pĹ™Ăchodu prvnĂho svazku. OvěřenĂ vlivu zmÄ›n konfigurace kanálu na parametry S-V modelu. Práce demonstruje závislost parametrĹŻ Saleh-Valenzuela modelu v na vzdálenosti a výšce antĂ©n, avšak ukazuje, Ĺľe jejich prĹŻmÄ›rnĂ© hodnoty jsou blĂzkĂ© IEEE 802.15.3 standardu. OvěřenĂ moĹľnosti lokalizace pomocĂ metody TOA (time of arrival). Vzdálenost mezi antĂ©nami byla urÄŤena z profilu PDP s vyuĹľitĂm lineárnĂ závislosti vzdálenosti na zpoĹľdÄ›nĂ. SouĹ™adnice vysĂlacĂ antĂ©ny byly nalezeny pomocĂ dvou pĹ™ijĂmacĂch antĂ©n pomocĂ 2-D lokalizaÄŤnĂ techniky TOA. PorovnánĂ vypoÄŤtenĂ˝ch souĹ™adnic s pĹŻvodnĂmi vykazuje chybu menšà neĹľ 6%, coĹľ ukazuje vhodnost navrĹľenĂ©ho pĹ™Ăstupu pro lokalizaci vozidel.The dissertation is focused on channel measurements and modeling for vehicle-to-X communication and on localization. In order to realize an integrated intelligent transportation system (ITS), it is important to estimate channel features for intra-vehicle and out-of-vehicle scenarios. For this propose the following activities are carried out: simulation of the 802.11p PHY; comparison with 802.11a; channel measurements for different scenarios based on the 802.11p and ultra-wideband (UWB); creating channel models for 802.11p and UWB; UWB measurements to assess performance of localization. The vehicle-to-X communication is supposed on the IEEE 802.11p standard. The dissertation presents the differences between IEEE 802.11a and IEEE 802.11p physical layer standards through the simulation results of the transmission over a HIPERPLAN/2 channel. Further, the simulation of the 802.11p signal transmission over ITU-R M.1225 channel, which includes pedestrian and vehicle models with different relative delays and average power, is presented. The influence of the channel on the signal is analyzed using MATLAB simulation in terms of bit error rate (BER). The dissertation reports vehicular channel measurements in the frequency band of 5.8 GHz for IEEE 802.11p standard and for UWB (3-11 GHz). Experiments for both intra-vehicle and out-of-vehicle environments are carried out. It was observed that the large-scale variations (LSVs) of the power delay profiles (PDPs) can be best approximated through a two-term exponential decay model for the 802.11p protocol, in contrast to the Saleh-Valenzuela (S-V) model which is suitable for UWB systems. For each measurement, the LSV trend was used to construct the respective channel impulse response (CIR). Next, the CIR is used in 802.11p simulation to evaluate the BER performance, following a Rician model. The results of the BER simulation shows the suitability of the protocol for in-car as well as out-of-car wireless applications. The simulation for out-of-car parameters indicate that the error performances do not vary much and it is possible to determine an average BER curve for the whole set of data. The randomness in UWB channel for small positional variations around a car, parked in an underground garage, is reported. The path loss (PL) is found to be monotonically increasing with distance but varies randomly with angle and height and thereby renders signal strength based ranging inaccurate for such scenarios. On the other hand, arrival time of the first ray can be used for reliable estimation of distance, independent on transmitter angle or height. The number of clusters in the PDP is reduced with distance but the nature of the profile remains fairly consistent with angle. The S-V model parameters also vary with distance and height but their average values are close to the IEEE 802.15.3 recommended channel model. For localization applications the distance between the antennas is calculated exploiting the linear dependence of distance on delay from PDP. The coordinates of a transmitting antenna are found with the help of two receiving antennas following a two-dimensional (2-D) time-of-arrival (TOA) based localization technique. A comparison of the calculated coordinates with the original ones exhibits an error of less than 6% which supports the suitability of the proposed approach for localization of the cars.
In-vehicle channel sounding in the 5.8-GHz band
The article reports vehicular channel measurements in the frequency band of 5.8 GHz for IEEE 802.11p standard. Experiments for both intra-vehicle and out-of-vehicle environments were carried out. It was observed that the large-scale variations (LSVs) of the power delay profiles (PDPs) can be best described through a two-term exponential decay model, in contrast to the linear models which are suitable for popular ultra-wideband (UWB) systems operating in the 3- to 11-GHz band. The small-scale variations (SSVs) are separated from the PDP by subtracting the LSV and characterized utilizing logistic, generalized extreme value (GEV), and normal distributions. Two sample Kolmogorov-Smirnov (K-S) tests validated that the logistic distribution is optimal for in-car, whereas the GEV distribution serves better for out-of-car measurements. For each measurement, the LSV trend was used to construct the respective channel impulse response (CIR), i.e., tap gains at different delays. Next, the CIR information is fed to an 802.11p simulation testbed to evaluate the bit error rate (BER) performance, following a Rician model. The BER results strongly vouch for the suitability of the protocol for in-car as well as out-of-car wireless applications in stationary environments.The article reports vehicular channel measurements in the frequency band of 5.8 GHz for IEEE 802.11p standard. Experiments for both intra-vehicle and out-of-vehicle environments were carried out. It was observed that the large-scale variations (LSVs) of the power delay profiles (PDPs) can be best described through a two-term exponential decay model, in contrast to the linear models which are suitable for popular ultra-wideband (UWB) systems operating in the 3- to 11-GHz band. The small-scale variations (SSVs) are separated from the PDP by subtracting the LSV and characterized utilizing logistic, generalized extreme value (GEV), and normal distributions. Two sample Kolmogorov-Smirnov (K-S) tests validated that the logistic distribution is optimal for in-car, whereas the GEV distribution serves better for out-of-car measurements. For each measurement, the LSV trend was used to construct the respective channel impulse response (CIR), i.e., tap gains at different delays. Next, the CIR information is fed to an 802.11p simulation testbed to evaluate the bit error rate (BER) performance, following a Rician model. The BER results strongly vouch for the suitability of the protocol for in-car as well as out-of-car wireless applications in stationary environments