194 research outputs found

    The In Vivo Role of the RP-Mdm2-p53 Pathway in Signaling Oncogenic Stress Induced by pRb Inactivation and Ras Overexpression

    Get PDF
    The Mdm2-p53 tumor suppression pathway plays a vital role in regulating cellular homeostasis by integrating a variety of stressors and eliciting effects on cell growth and proliferation. Recent studies have demonstrated an in vivo signaling pathway mediated by ribosomal protein (RP)-Mdm2 interaction that responds to ribosome biogenesis stress and evokes a protective p53 reaction. It has been shown that mice harboring a Cys-to-Phe mutation in the zinc finger of Mdm2 that specifically disrupts RP L11-Mdm2 binding are prone to accelerated lymphomagenesis in an oncogenic c-Myc driven mouse model of Burkitt's lymphoma. Because most oncogenes when upregulated simultaneously promote both cellular growth and proliferation, it therefore stands to reason that the RP-Mdm2-p53 pathway might also be essential in response to oncogenes other than c-Myc. Using genetically engineered mice, we now show that disruption of the RP-Mdm2-p53 pathway by an Mdm2C305F mutation does not accelerate prostatic tumorigenesis induced by inactivation of the pRb family proteins (pRb/p107/p130). In contrast, loss of p19Arf greatly accelerates the progression of prostate cancer induced by inhibition of pRb family proteins. Moreover, using ectopically expressed oncogenic H-Ras we demonstrate that p53 response remains intact in the Mdm2C305F mutant MEF cells. Thus, unlike the p19Arf-Mdm2-p53 pathway, which is considered a general oncogenic response pathway, the RP-Mdm2-p53 pathway appears to specifically suppress tumorigenesis induced by oncogenic c-Myc

    Response Monitoring with [18F]FLT PET and Diffusion-Weighted MRI After Cytotoxic 5-FU Treatment in an Experimental Rat Model for Colorectal Liver Metastases.

    Get PDF
    PURPOSE: The aim of the study was to investigate the potential of diffusion-weighted magnetic resonance imaging (DW-MRI) and 3'-dexoy-3'-[(¹⁸)F]fluorothymidine ([(¹⁸)F]FLT) positron emission tomography (PET) as early biomarkers of treatment response of 5-fluorouracil (5-FU) in a syngeneic rat model of colorectal cancer liver metastases. PROCEDURES: Wag/Rij rats with intrahepatic syngeneic CC531 tumors were treated with 5-FU (15, 30, or 60 mg/kg in weekly intervals). Before treatment and at days 1, 3, 7, and 14 after treatment rats underwent DW-MRI and [(¹⁸)F]FLT PET. Tumors were analyzed immunohistochemically for Ki67, TK1, and ENT1 expression. RESULTS: 5-FU inhibited the growth of CC531 tumors in a dose-dependent manner. Immunohistochemical analysis did not show significant changes in Ki67, TK1, and ENT1 expression. However, [(¹⁸)F]FLT SUV_mean and SUV_max were significantly increased at days 4 and 7 after treatment with 5-FU (60 mg/kg) and returned to baseline at day 14 (SUV_max at days -1, 4, 7, and 14 was 1.1 ± 0.1, 2.3 ± 0.5, 2.3 ± 0.6, and 1.5 ± 0.4, respectively). No changes in [(¹⁸)F]FLT uptake were observed in the nontreated animals. Furthermore, the apparent diffusion coefficient (ADCmean) did not change in 5-FU-treated rats compared to untreated rats. CONCLUSION: This study suggests that 5-FU treatment induces a flare in [(¹⁸)F]FLT uptake of responsive CC531 tumors in the liver, while the ADC_mean did not change significantly. Future studies in larger groups are warranted to further investigate whether [(¹⁸)F]FLT PET can discriminate between disease progression and treatment response.The research leading to these results has received support from the Innovative Medicines Initiative Joint Undertaking (www.imi.europa.eu) under grant agreement number 115151, resources of which are composed of financial contribution from the European Union’s Seventh Framework Programme (FP7/2007-2013) and EFPIA companies’ in kind contribution

    Response Monitoring with [18F]FLT PET and Diffusion-Weighted MRI After Cytotoxic 5-FU Treatment in an Experimental Rat Model for Colorectal Liver Metastases.

    Get PDF
    PURPOSE: The aim of the study was to investigate the potential of diffusion-weighted magnetic resonance imaging (DW-MRI) and 3'-dexoy-3'-[18F]fluorothymidine ([18F]FLT) positron emission tomography (PET) as early biomarkers of treatment response of 5-fluorouracil (5-FU) in a syngeneic rat model of colorectal cancer liver metastases. PROCEDURES: Wag/Rij rats with intrahepatic syngeneic CC531 tumors were treated with 5-FU (15, 30, or 60 mg/kg in weekly intervals). Before treatment and at days 1, 3, 7, and 14 after treatment rats underwent DW-MRI and [18F]FLT PET. Tumors were analyzed immunohistochemically for Ki67, TK1, and ENT1 expression. RESULTS: 5-FU inhibited the growth of CC531 tumors in a dose-dependent manner. Immunohistochemical analysis did not show significant changes in Ki67, TK1, and ENT1 expression. However, [18F]FLT SUVmean and SUVmax were significantly increased at days 4 and 7 after treatment with 5-FU (60 mg/kg) and returned to baseline at day 14 (SUVmax at days -1, 4, 7, and 14 was 1.1 ± 0.1, 2.3 ± 0.5, 2.3 ± 0.6, and 1.5 ± 0.4, respectively). No changes in [18F]FLT uptake were observed in the nontreated animals. Furthermore, the apparent diffusion coefficient (ADCmean) did not change in 5-FU-treated rats compared to untreated rats. CONCLUSION: This study suggests that 5-FU treatment induces a flare in [18F]FLT uptake of responsive CC531 tumors in the liver, while the ADCmean did not change significantly. Future studies in larger groups are warranted to further investigate whether [18F]FLT PET can discriminate between disease progression and treatment response.The research leading to these results has received support from the Innovative Medicines Initiative Joint Undertaking (www.imi.europa.eu) under grant agreement number 115151, resources of which are composed of financial contribution from the European Union’s Seventh Framework Programme (FP7/2007-2013) and EFPIA companies’ in kind contribution

    Suppression of Soft Tissue Sarcoma Growth by a Host Defense-Like Lytic Peptide

    Get PDF
    BACKGROUND: Soft tissue sarcoma (STS) is an anatomically and histologically heterogeneous neoplasia that shares a putative mesenchymal cell origin. The treatment with common chemotherapeutics is still unsatisfying because of association with poor response rates. Although evidence is accumulating for potent oncolytic activity of host defense peptides (HDPs), their potential therapeutic use is often limited by poor bioavailability and inactivation in serum. Therefore, we tested the designer host defense-like lytic D,L-amino acid peptide [D]-K3H3L9 on two STS cell lines in vitro and also in an athymic and syngeneic mouse model. In recent studies the peptide could show selectivity against prostate carcinoma cells and also an active state in serum. METHODS: In vitro the human synovial sarcoma cell line SW982, the murine fibrosarcoma cell line BFS-1 and primary human fibroblasts as a control were exposed to [D]-K3H3L9, a 15mer D,L-amino acid designer HDP. Cell vitality in physiological and acidic conditions (MTT-assay), cell growth (BrdU) and DNA-fragmentation (TUNEL) were investigated. Membrane damage at different time points could be analyzed with LDH assay. An antibody against the tested peptide and recordings using scanning electron microscopy could give an inside in the mode of action. In vivo [D]-K3H3L9 was administered intratumorally in an athymic and syngeneic (immunocompetent) mouse model with SW982 and BFS-1 cells, respectively. After three weeks tumor sections were histologically analyzed. RESULTS: The peptide exerts rapid and high significant cytotoxicity and antiproliferating activity against the malignant cell lines, apparently via a membrane disrupting mode of action. The local intratumoral administration of [D]-K3H3L9 in the athymic and syngeneic mice models significantly inhibited tumor progression. The histological analyses of the tumor sections revealed a significant antiproliferative, antiangiogenic activity of the treatment group. CONCLUSION: These findings demonstrate the in vitro and in vivo oncolytic activity of [D]-K3H3L9 in athymic and syngeneic mouse models

    Mangrove trees affect the community structure and distribution of anammox bacteria at an anthropogenic-polluted mangrove in the Pearl River Delta reflected by 16S rRNA and hydrazine oxidoreductase (HZO) encoding gene analyses

    Get PDF
    Anaerobic ammonium oxidizing (anammox) bacterial community structures were investigated in surface (1–2 cm) and lower (20–21 cm) layers of mangrove sediments at sites located immediately to the mangrove trees (S0), 10 m (S1) and 1000 m (S2) away from mangrove trees in a polluted area of the Pearl River Delta. At S0, both 16S rRNA and hydrazine oxidoreductase (HZO) encoding genes of anammox bacteria showed high diversity in lower layer sediments, but they were not detectable in lower layer sediments in mangrove forest. S1 and S2 shared similar anammox bacteria communities in both surface and lower layers, which were quite different from that of S0. At all three locations, higher richness of anammox bacteria was detected in the surface layer than the lower layer; 16S rRNA genes revealed anammox bacteria were composed by four phylogenetic clusters affiliated with the “Scalindua” genus, and one group related to the potential anammox bacteria; while the hzo genes showed that in addition to sequences related to the “Scalindua”, sequences affiliated with genera of “Kuenenia”, “Brocadia”, and “Jettenia” were also detected in mangrove sediments. Furthermore, hzo gene abundances decreased from 36.5 × 104 to 11.0 × 104 copies/gram dry sediment in lower layer sediments while increased from below detection limit to 31.5 × 104 copies/gram dry sediment in lower layer sediments from S0 to S2. The results indicated that anammox bacteria communities might be strongly influenced by mangrove trees. In addition, the correlation analysis showed the redox potential and the molar ratio of ammonium to nitrite in sediments might be important factors affecting the diversity and distribution of anammox bacteria in mangrove sediments

    Role of novel targeted therapies in the clinic

    Get PDF
    The number and variety of novel, molecular-targeted agents offers realistic hope for significant advances in cancer treatment. The potential of these new treatment approaches is unquestionable, but the reality is something that only thorough clinical evaluation and experience can reveal. Clinical experience of targeted therapies is at an early stage but it is likely that we will have an increasing number of treatment options available to us in the near future. This manuscript explores our current understanding of molecular-targeted therapies and considers: What approach should be used? (single vs multitarget agents); When should they be administered? (identifying the optimal point for intervention); How should they be used? (monotherapy or combination therapy regimens); and Who should we be giving them to? (acknowledging the need for patient selection)
    corecore