3,473 research outputs found

    A new model for predicting relative nonwetting phase permeability from soil water retention curves

    Get PDF
    Relative permeability of the nonwetting phase in a multiphase flow in porous media is a function of phase saturation. Specific expressions of this function are commonly determined by combining soil water retention curves with relative nonwetting phase permeability models. Experimental evidence suggests that the relative permeability of the nonwetting phase can be significantly overestimated by the existing relative permeability models. A new model for the prediction of relative nonwetting phase permeability from soil water retention curves is proposed in this paper. A closed form expression can be obtained in combination with soil water retention curves. The model is mathematically simple and can easily and efficiently be implemented in numerical models of multiphase flow processes in porous media. The predicting capability of the proposed model is contrasted with well-supported models by comparing the measured and predicted relative air permeability data for 11 soils, representing a wide range of soil textures, from sand to silty clay loam. In most of the cases the proposed model improves the agreement between the predicted relative air permeability and the measured data. Copyright 2011 by the American Geophysical Union.published_or_final_versio

    Increased Water Storage in the Qaidam Basin, the North Tibet Plateau from GRACE Gravity Data

    Get PDF
    published_or_final_versio

    Investigations of the g factors and local structure for orthorhombic Cu^{2+}(1) site in fresh PrBa_{2}Cu_{3}O_{6+x} powders

    Full text link
    The electron paramagnetic resonance (EPR) g factors g_x, g_y and g_z of the orthorhombic Cu^{2+}(1) site in fresh PrBa_{2}Cu_{3}O_{6+x} powders are theoretically investigated using the perturbation formulas of the g factors for a 3d^9 ion under orthorhombically elongated octahedra. The local orthorhombic distortion around the Cu^{2+}(1) site due to the Jahn-Teller effect is described by the orthorhombic field parameters from the superposition model. The [CuO6]^{10-} complex is found to experience an axial elongation of about 0.04 {\AA} along c axis and the relative bond length variation of about 0.09 {\AA} along a and b axes of the Jahn-Teller nature. The theoretical results of the g factors based on the above local structure are in reasonable agreement with the experimental data.Comment: 6 pages, 1 figur

    Quantum dense coding in multiparticle entangled states via local measurements

    Full text link
    In this paper, we study quantum dense coding between two arbitrarily fixed particles in a (N+2)-particle maximally-entangled states through introducing an auxiliary qubit and carrying out local measurements. It is shown that the transmitted classical information amount through such an entangled quantum channel usually is less than two classical bits. However, the information amount may reach two classical bits of information, and the classical information capacity is independent of the number of the entangled particles in the initial entangled state under certain conditions. The results offer deeper insights to quantum dense coding via quantum channels of multi-particle entangled states.Comment: 3 pages, no figur

    Will higher traffic flow lead to more traffic conflicts? A crash surrogate metric based analysis

    Get PDF
    © 2017 Kuang et al. This is an open access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited. In this paper, we aim to examine the relationship between traffic flow and potential conflict risks by using crash surrogate metrics. It has been widely recognized that one traffic flow corresponds to two distinct traffic states with different speeds and densities. In view of this, instead of simply aggregating traffic conditions with the same traffic volume, we represent potential conflict risks at a traffic flow fundamental diagram. Two crash surrogate metrics, namely, Aggregated Crash Index and Time to Collision, are used in this study to represent the potential conflict risks with respect to different traffic conditions. Furthermore, Beijing North Ring III and Next Generation SIMulation Interstate 80 datasets are utilized to carry out case studies. By using the proposed procedure, both datasets generate similar trends, which demonstrate the applicability of the proposed methodology and the transferability of our conclusions

    Review on airflow in unsaturated zones induced by natural forcings

    Get PDF
    Subsurface airflow in unsaturated zones induced by natural forcings is of importance in many environmental and engineering fields, such as environmental remediation, water infiltration and groundwater recharge, coastal soil aeration, mine and tunnel ventilation, and gas exchange between soil and atmosphere. This review synthesizes the published literature on subsurface airflow driven by natural forcings such as atmospheric pressure fluctuations, topographic effect, water table fluctuations, and water infiltration. The present state of knowledge concerning the mechanisms, analytical and numerical models, and environmental and engineering applications related to the naturally occurring airflow is discussed. Airflow induced by atmospheric pressure fluctuations is studied the most because of the applications to environmental remediation and transport of trace gases from soil to atmosphere, which are very important in understanding biogeochemical cycling and global change. Airflow induced by infiltration is also an extensively investigated topic because of its implications in rainfall infiltration and groundwater recharge. Airflow induced by water table fluctuations is important in coastal areas because it plays an important role in coastal environmental remediation and ecological systems. Airflow induced by topographic effect is studied the least. However, it has important applications in unsaturated zone gas transport and natural ventilation of mines and tunnels. Finally, the similarities and differences in the characteristics of the air pressure and airflow are compared and future research efforts are recommended.published_or_final_versio

    Air and water flows in a vertical sand column

    Get PDF
    The unsteady state drainage of water from a vertical sand column with and without a finer layer on the top was studied theoretically and experimentally to investigate the airflow generated by the finer layer. The sand column, saturated at its lower portion and initially in the condition of hydrostatic equilibrium, is drained at its bottom at constant head. The results show that significant vacuum can be generated in the vadose zone of the column with a finer layer on the top. The vacuum increases quickly in the earlier stage of the drainage, reaches a maximum, and gradually becomes zero. Because of the effect of the vacuum in the vadose zone, water is held in and the cumulative outflow from the column with the finer layer is much smaller than without the layer during most of the drainage process. Ordinary differential equations (ODE), which require only saturated hydraulic properties of the porous media, are derived to predict the location of the surface of saturation and vacuum in the vadose zone in air-water two-phase flow. The solutions of ODE match very satisfactorily with the experimental data and give better results than TOUGH2. Copyright 2011 by the American Geophysical Union.published_or_final_versio

    New Insights into Traffic Dynamics: A Weighted Probabilistic Cellular Automaton Model

    Full text link
    From the macroscopic viewpoint for describing the acceleration behavior of drivers, this letter presents a weighted probabilistic cellular automaton model (the WP model, for short) by introducing a kind of random acceleration probabilistic distribution function. The fundamental diagrams, the spatio-temporal pattern are analyzed in detail. It is shown that the presented model leads to the results consistent with the empirical data rather well, nonlinear velocity-density relationship exists in lower density region, and a new kind of traffic phenomenon called neo-synchronized flow is resulted. Furthermore, we give the criterion for distinguishing the high-speed and low-speed neo-synchronized flows and clarify the mechanism of this kind of traffic phenomena. In addition, the result that the time evolution of distribution of headways is displayed as a normal distribution further validates the reasonability of the neo-synchronized flow. These findings suggest that the diversity and randomicity of drivers and vehicles has indeed remarkable effect on traffic dynamics.Comment: 12 pages, 5 figures, submitted to Europhysics Letter

    Hydrogenated Si12Au20 cluster as a molecular sensor with high performance for NH3 and NO detection: A first-principle study

    Get PDF
    Using density functional theory (DFT) calculations, we investigated the adsorption of NH3, NO, CH4, CO2, H2, N2, H2O, and O2 molecules on the (hydrogenated) Si12Au20 cluster with the aim of finding a promising molecular sensor for NH3 and NO detection. The Si12Au20 cluster could be a disposable molecular sensor for NH3 and NO because of its long recovery time (over 3 h). To improve the recovery time, we considered the hydrogenation of Si atoms in the Si12Au20 cluster to reduce the strength of the adsorption of NH3 and NO. The vibrational frequency analysis, molecular dynamics simulations and electronic properties show that the H12Si12Au20 (HSA) structure is highly stable. NH3 and NO are chemisorbed on HSA with moderate adsorption energies and evident charge transfer, while the other molecules are all physiosorbed on HSA. Our results show that the electrical conductivities of HSA will change dramatically due to the adsorption of NH3 and NO molecules. The recovery time of HSA is predicted to be very short at 300 K. To have a comprehensive comparison with the above results, we also considered different coverages of NO or NH3 molecules adsorbed on HSA, and the adsorption of NO and NH3 on the Au32 and Si32 clusters. We found that Au32 and Si32 clusters are not suitable for NO and NH3 detection. We predict that HSA should be a promising gas sensor with high performance for NH3 and NO detection at low coverage for future experimental validation
    corecore