24 research outputs found

    Refining Critical Structure Contouring in STereotactic Arrhythmia Radioablation (STAR): Benchmark Results and Consensus Guidelines from the STOPSTORM.eu Consortium.

    Get PDF
    BACKGROUND AND PURPOSE In patients with recurrent ventricular tachycardia (VT), STereotactic Arrhythmia Radioablation (STAR) shows promising results. The STOPSTORM consortium was established to investigate and harmonise STAR treatment in Europe. The primary goals of this benchmark study were to standardise contouring of organs at risk (OAR) for STAR, including detailed substructures of the heart, and accredit each participating centre. MATERIALS AND METHODS Centres within the STOPSTORM consortium were asked to delineate 31 OAR in three STAR cases. Delineation was reviewed by the consortium expert panel and after a dedicated workshop feedback and accreditation was provided to all participants. Further quantitative analysis was performed by calculating DICE similarity coefficients (DSC), median distance to agreement (MDA), and 95th percentile distance to agreement (HD95). RESULTS Twenty centres participated in this study. Based on DSC, MDA and HD95, the delineations of well-known OAR in radiotherapy were similar, such as lungs (median DSC=0.96, median MDA=0.1mm and median HD95=1.1mm) and aorta (median DSC=0.90, median MDA=0.1mm and median HD95=1.5mm). Some centres did not include the gastro-oesophageal junction, leading to differences in stomach and oesophagus delineations. For cardiac substructures, such as chambers (median DSC=0.83, median MDA=0.2mm and median HD95=0.5mm), valves (median DSC=0.16, median MDA=4.6mm and median HD95=16.0mm), coronary arteries (median DSC=0.4, median MDA=0.7mm and median HD95=8.3mm) and the sinoatrial and atrioventricular nodes (median DSC=0.29, median MDA=4.4mm and median HD95=11.4mm), deviations between centres occurred more frequently. After the dedicated workshop all centres were accredited and contouring consensus guidelines for STAR were established. CONCLUSION This STOPSTORM multi-centre critical structure contouring benchmark study showed high agreement for standard radiotherapy OAR. However, for cardiac substructures larger disagreement in contouring occurred, which may have significant impact on STAR treatment planning and dosimetry evaluation. To standardize OAR contouring, consensus guidelines for critical structure contouring in STAR were established

    Nanoblades allow high-level genome editing in murine and human organoids

    Get PDF
    Genome engineering has become more accessible thanks to the CRISPR-Cas9 gene-editing system. However, using this technology in synthetic organs called “organoids” is still very inefficient. This is due to the delivery methods for the CRISPR-Cas9 machinery, which include electroporation of CRISPR-Cas9 DNA, mRNA, or ribonucleoproteins containing the Cas9-gRNA complex. However, these procedures are quite toxic for the organoids. Here, we describe the use of the “nanoblade (NB)” technology, which outperformed by far gene-editing levels achieved to date for murine- and human tissue-derived organoids. We reached up to 75% of reporter gene knockout in organoids after treatment with NBs. Indeed, high-level NB-mediated knockout for the androgen receptor encoding gene and the cystic fibrosis transmembrane conductance regulator gene was achieved with single gRNA or dual gRNA containing NBs in murine prostate and colon organoids. Likewise, NBs achieved 20%–50% gene editing in human organoids. Most importantly, in contrast to other gene-editing methods, this was obtained without toxicity for the organoids. Only 4 weeks are required to obtain stable gene knockout in organoids and NBs simplify and allow rapid genome editing in organoids with little to no side effects including unwanted insertion/deletions in off-target sites thanks to transient Cas9/RNP expression

    Refining critical structure contouring in STereotactic Arrhythmia Radioablation (STAR): Benchmark results and consensus guidelines from the STOPSTORM.eu consortium

    Get PDF
    BACKGROUND AND PURPOSE: In patients with recurrent ventricular tachycardia (VT), STereotactic Arrhythmia Radioablation (STAR) shows promising results. The STOPSTORM.eu consortium was established to investigate and harmonise STAR treatment in Europe. The primary goals of this benchmark study were to standardise contouring of organs at risk (OAR) for STAR, including detailed substructures of the heart, and accredit each participating centre. MATERIALS AND METHODS: Centres within the STOPSTORM.eu consortium were asked to delineate 31 OAR in three STAR cases. Delineation was reviewed by the consortium expert panel and after a dedicated workshop feedback and accreditation was provided to all participants. Further quantitative analysis was performed by calculating DICE similarity coefficients (DSC), median distance to agreement (MDA), and 95th percentile distance to agreement (HD95). RESULTS: Twenty centres participated in this study. Based on DSC, MDA and HD95, the delineations of well-known OAR in radiotherapy were similar, such as lungs (median DSC = 0.96, median MDA = 0.1 mm and median HD95 = 1.1 mm) and aorta (median DSC = 0.90, median MDA = 0.1 mm and median HD95 = 1.5 mm). Some centres did not include the gastro-oesophageal junction, leading to differences in stomach and oesophagus delineations. For cardiac substructures, such as chambers (median DSC = 0.83, median MDA = 0.2 mm and median HD95 = 0.5 mm), valves (median DSC = 0.16, median MDA = 4.6 mm and median HD95 = 16.0 mm), coronary arteries (median DSC = 0.4, median MDA = 0.7 mm and median HD95 = 8.3 mm) and the sinoatrial and atrioventricular nodes (median DSC = 0.29, median MDA = 4.4 mm and median HD95 = 11.4 mm), deviations between centres occurred more frequently. After the dedicated workshop all centres were accredited and contouring consensus guidelines for STAR were established. CONCLUSION: This STOPSTORM multi-centre critical structure contouring benchmark study showed high agreement for standard radiotherapy OAR. However, for cardiac substructures larger disagreement in contouring occurred, which may have significant impact on STAR treatment planning and dosimetry evaluation. To standardize OAR contouring, consensus guidelines for critical structure contouring in STAR were established

    Epithelial dysregulation in obese severe asthmatics with gastro-oesophageal reflux

    Get PDF

    Besprechungen

    No full text

    Ganztagseinrichtungen im Elementarbereich als familiennahe Sozialisationsfelder Abschlussbericht ueber die wissenschaftliche Begleitung des Projektes

    No full text
    UuStB Koeln(38)-8406674 / FIZ - Fachinformationszzentrum Karlsruhe / TIB - Technische InformationsbibliothekSIGLEDEGerman

    Treatment of advanced gastroenteropancreatic neuroendocrine neoplasia, are we on the way to personalised medicine?

    No full text
    Gastroenteropancreatic neuroendocrine neoplasia (GEPNEN) comprises clinically as well as prognostically diverse tumour entities often diagnosed at late stage. Current classification provides a uniform terminology and a Ki67-based grading system, thereby facilitating management. Advances in the study of genomic and epigenetic landscapes have amplified knowledge of tumour biology and enhanced identification of prognostic and potentially predictive treatment subgroups. Translation of this genomic and mechanistic biology into advanced GEPNEN management is limited. 'Targeted' treatments such as somatostatin analogues, peptide receptor radiotherapy, tyrosine kinase inhibitors and mammalian target of rapamycin inhibitors are treatment options but predictive tools are lacking. The inability to identify clonal heterogeneity and define critical oncoregulatory pathways prior to therapy, restrict therapeutic efficacy as does the inability to monitor disease status in real time. Chemotherapy in the poor prognosis NEN G3 group, though associated with acceptable response rates, only leads to short-term tumour control and their molecular biology requires delineation to provide new and more specific treatment options.The future requires an exploration of the NEN tumour genome, its microenvironment and an identification of critical oncologic checkpoints for precise drug targeting. In the advance to personalised medical treatment of patients with GEPNEN, clinical trials need to be based on mechanistic and multidimensional characterisation of each tumour in order to identify the therapeutic agent effective for the individual tumour.This review surveys advances in NEN research and delineates the current status of translation with a view to laying the basis for a genome-based personalised medicine management of advanced GEPNEN

    Rhinovirus-16 induced temporal interferon responses in nasal epithelium links with viral clearance and symptoms

    No full text
    Background: The temporal in vivo response of epithelial cells to a viral challenge and its association with viral clearance and clinical outcomes has been largely unexplored in asthma. Objective: To determine gene expression profiles over time in nasal epithelial cells (NECs) challenged in vivo with rhinovirus-16 (RV16) and compare to nasal symptoms and viral clearance. Methods: Patients with stable mild to moderate asthma (n = 20) were challenged intranasally with RV16. Nasal brush samples for RNA sequencing were taken 7 days prior to infection and 3, 6 and 14 days post-infection, and blood samples 4 days prior to infection and day 6 post-infection. Viral load was measured in nasal lavage fluid at day 3, 6 and 14. Results: Top differentially (>2.5-fold increase) expressed gene sets in NECs post-RV16 at days 3 and 6, compared with baseline, were interferon alpha and gamma response genes. Patients clearing the virus within 6 days (early resolvers) had a significantly increased interferon response at day 6, whereas those having cleared the virus by day 14 (late resolvers) had significantly increased responses at day 3, 6 and 14. Interestingly, patients not having cleared the virus by day 14 (non-resolvers) had no enhanced interferon responses at any of these days. The daily Cold Symptom Scores (CSS) peaked at days 3 to 5 and correlated positively with interferon response genes at day 3 (R = 0.48), but not at other time-points. Interferon response genes were also enhanced in blood at day 6 after RV16 challenge. Conclusion and Clinical Relevance: This study shows that viral load and clearance varies markedly over time in mild to moderate asthma patients exposed to a fixed RV16 dose. The host's nasal interferon response to RV16 at day 3 is associated with upper respiratory tract symptoms. The temporal interferon response in nasal epithelium associates with viral clearance in the nasal compartment
    corecore