2,420 research outputs found
The sweeping rate in diffusion-mediated reactions on dust grain surfaces
A prominent chemical reaction in interstellar clouds is the formation of
molecular hydrogen by recombination, which essentially takes place on dust
grain surfaces. Analytical approaches to model such a system have hitherto
neglected the spatial aspects of the problem by employing a simplistic version
of the sweeping rate of reactants. We show how these aspects can be accounted
for by a consistent definition of the sweeping rate, and calculate it exactly
for a spherical grain. Two regimes can be identified: Small grains, on which
two reactants almost surely meet, and large grains, where this is very
unlikely. We compare the true sweeping rate to the conventional approximation
and find a characteristic reduction in both regimes, most pronounced for large
grains. These effects can be understood heuristically using known results from
the analysis of two-dimensional random walks. We finally examine the influence
of using the true sweeping rate in the calculation of the efficiency of
hydrogen recombination: For fixed temperature, the efficiency can be reduced
considerably, and relative to that, small grains gain in importance, but the
temperature window in which recombination is efficient is not changed
substantially.Comment: 10 pages, 6 figure
Symmetry analysis of magneto-optical effects: The case of x-ray diffraction and x-ray absorption at the transition metal L23 edge
A general symmetry analysis of the optical conductivity or scattering tensor
is used to rewrite the conductivity tensor as a sum of fundamental spectra
multiplied by simple functions depending on the local magnetization direction.
Using this formalism, we present several numerical examples at the transition
metal L23 edge. From these numerical calculations we can conclude that large
deviations from the magneto-optical effects in spherical symmetry are found.
These findings are in particular important for resonant x-ray diffraction
experiments where the polarization dependence and azimuthal dependence of the
scattered Bragg intensity is used to determine the local ordered magnetization
direction
Magnetic coupling in highly-ordered NiO/Fe3O4(110): Ultrasharp magnetic interfaces vs. long-range magnetoelastic interactions
We present a laterally resolved X-ray magnetic dichroism study of the
magnetic proximity effect in a highly ordered oxide system, i.e. NiO films on
Fe3O4(110). We found that the magnetic interface shows an ultrasharp
electronic, magnetic and structural transition from the ferrimagnet to the
antiferromagnet. The monolayer which forms the interface reconstructs to
NiFe2O4 and exhibits an enhanced Fe and Ni orbital moment, possibly caused by
bonding anisotropy or electronic interaction between Fe and Ni cations. The
absence of spin-flop coupling for this crystallographic orientation can be
explained by a structurally uncompensated interface and additional
magnetoelastic effects
Adaptation dynamics of the quasispecies model
We study the adaptation dynamics of an initially maladapted population
evolving via the elementary processes of mutation and selection. The evolution
occurs on rugged fitness landscapes which are defined on the multi-dimensional
genotypic space and have many local peaks separated by low fitness valleys. We
mainly focus on the Eigen's model that describes the deterministic dynamics of
an infinite number of self-replicating molecules. In the stationary state, for
small mutation rates such a population forms a {\it quasispecies} which
consists of the fittest genotype and its closely related mutants. The
quasispecies dynamics on rugged fitness landscape follow a punctuated (or
step-like) pattern in which a population jumps from a low fitness peak to a
higher one, stays there for a considerable time before shifting the peak again
and eventually reaches the global maximum of the fitness landscape. We
calculate exactly several properties of this dynamical process within a
simplified version of the quasispecies model.Comment: Proceedings of Statphys conference at IIT Guwahati, to be published
in Praman
Morphological stability of electromigration-driven vacancy islands
The electromigration-induced shape evolution of two-dimensional vacancy
islands on a crystal surface is studied using a continuum approach. We consider
the regime where mass transport is restricted to terrace diffusion in the
interior of the island. In the limit of fast attachment/detachment kinetics a
circle translating at constant velocity is a stationary solution of the
problem. In contrast to earlier work [O. Pierre-Louis and T.L. Einstein, Phys.
Rev. B 62, 13697 (2000)] we show that the circular solution remains linearly
stable for arbitrarily large driving forces. The numerical solution of the full
nonlinear problem nevertheless reveals a fingering instability at the trailing
end of the island, which develops from finite amplitude perturbations and
eventually leads to pinch-off. Relaxing the condition of instantaneous
attachment/detachment kinetics, we obtain non-circular elongated stationary
shapes in an analytic approximation which compares favorably to the full
numerical solution.Comment: 12 page
Accurate rate coefficients for models of interstellar gas-grain chemistry
The methodology for modeling grain-surface chemistry has been greatly
improved by taking into account the grain size and fluctuation effects.
However, the reaction rate coefficients currently used in all practical models
of gas-grain chemistry are inaccurate by a significant amount. We provide
expressions for these crucial rate coefficients that are both accurate and easy
to incorporate into gas-grain models.
We use exact results obtained in earlier work, where the reaction rate
coefficient was defined by a first-passage problem, which was solved using
random walk theory.
The approximate reaction rate coefficient presented here is easy to include
in all models of interstellar gas-grain chemistry. In contrast to the commonly
used expression, the results that it provides are in perfect agreement with
detailed kinetic Monte Carlo simulations. We also show the rate coefficient for
reactions involving multiple species.Comment: 4 pages, 2 figure
Clonal interference and Muller's ratchet in spatial habitats
Competition between independently arising beneficial mutations is enhanced in
spatial populations due to the linear rather than exponential growth of clones.
Recent theoretical studies have pointed out that the resulting fitness dynamics
is analogous to a surface growth process, where new layers nucleate and spread
stochastically, leading to the build up of scale-invariant roughness. This
scenario differs qualitatively from the standard view of adaptation in that the
speed of adaptation becomes independent of population size while the fitness
variance does not. Here we exploit recent progress in the understanding of
surface growth processes to obtain precise predictions for the universal,
non-Gaussian shape of the fitness distribution for one-dimensional habitats,
which are verified by simulations. When the mutations are deleterious rather
than beneficial the problem becomes a spatial version of Muller's ratchet. In
contrast to the case of well-mixed populations, the rate of fitness decline
remains finite even in the limit of an infinite habitat, provided the ratio
between the deleterious mutation rate and the square of the
(negative) selection coefficient is sufficiently large. Using again an analogy
to surface growth models we show that the transition between the stationary and
the moving state of the ratchet is governed by directed percolation
Statistics of turbulence in the energy-containing range of Taylor-Couette compared to canonical wall-bounded flows
Considering structure functions of the streamwise velocity component in a
framework akin to the extended self-similarity hypothesis (ESS), de Silva
\textit{et al.} (\textit{J. Fluid Mech.}, vol. 823,2017, pp. 498-510) observed
that remarkably the \textit{large-scale} (energy-containing range) statistics
in canonical wall bounded flows exhibit universal behaviour. In the present
study, we extend this universality, which was seen to encompass also flows at
moderate Reynolds number, to Taylor-Couette flow. In doing so, we find that
also the transversal structure function of the spanwise velocity component
exhibits the same universal behaviour across all flow types considered. We
further demonstrate that these observations are consistent with predictions
developed based on an attached-eddy hypothesis. These considerations also yield
a possible explanation for the efficacy of the ESS framework by showing that it
relaxes the self-similarity assumption for the attached eddy contributions. By
taking the effect of streamwise alignment into account, the attached eddy model
predicts different behaviour for structure functions in the streamwise and in
the spanwise directions and that this effect cancels in the ESS-framework ---
both consistent with the data. Moreover, it is demonstrated here that also the
additive constants, which were previously believed to be flow dependent, are
indeed universal at least in turbulent boundary layers and pipe flow where
high-Reynolds number data are currently available.Comment: accepted in J. Fluid Mec
ESR of YbRh2Si2 and 174YbRh2Si2 : local and itinerant properties
Below the Kondo temperature the heavy Fermion compound YbRhSi
shows a well defined Electron Spin Resonance (ESR) with local Yb
properties. We report a detailed analysis of the ESR intensity which gives
information on the number of ESR active centers relative to the ESR of well
localized Yb in YPd:Yb. The ESR lineshape is investigated regarding
contributions from itinerant centers. From the ESR of monoisotopic
YbRhSi we could exclude unresolved hyperfine contributions
to the lineshape.Comment: 3 Figure
- …