4 research outputs found

    100G Flexible IM-DD 850 nm VCSEL Transceiver with Fractional Bit Rate Using Eight-Dimensional PAM

    Get PDF
    We demonstrate a novel optical transceiver scheme with a net flexible bit rate up to 100Gbit/s with 5 Gbit/s granularity, using an eight-dimensional modulation format family, and investigate its performance on capacity, reach, and power tolerance

    Effective 100 Gb/s IM/DD 850-nm Multi- and Single-Mode VCSEL Transmission Through OM4 MMF

    Get PDF
    To cope with the ever increasing data traffic demands in modern data centers, new approaches and technologies must be explored. Short range optical data links play a key role in this scenario, enabling very high speed data rate links. Recently, great research efforts are being made to improve the performance of vertical-cavity surface-emitting lasers (VCSELs) based transmission links, which constitute a cost-effective solution desirable for massive deployments. In this paper, we experimentally demonstrate intensity-modulation direct-detection transmissions with a data rate of 107.5 Gb/s over 10 m of OM4 multimode fiber (MMF) using a multimode VCSEL at 850 nm, and up to 100 m of OM4 MMF using a single-mode VCSEL at 850 nm. Measured bit error rates were below 7% overhead forward error correction limit of 3.8e−03, thus, achieving an effective bit rate of 100.5 Gb/s. These successful transmissions were achieved by means of the multiband approach of carrierless amplitude phase modulation. To cope with the ever increasing data traffic demands in modern data centers, new approaches and technologies must be explored. Short range optical data links play a key role in this scenario, enabling very high speed data rate links. Recently, great research efforts are being made to improve the performance of vertical-cavity surface-emitting lasers (VCSELs) based transmission links, which constitute a cost-effective solution desirable for massive deployments. In this paper, we experimentally demonstrate intensity-modulation direct-detection transmissions with a data rate of 107.5 Gb/s over 10 m of OM4 multimode fiber (MMF) using a multimode VCSEL at 850 nm, and up to 100 m of OM4 MMF using a single-mode VCSEL at 850 nm. Measured bit error rates were below 7% overhead forward error correction limit of 3.8e-03, thus, achieving an effective bit rate of 100.5 Gb/s. These successful transmissions were achieved by means of the multiband approach of carrierless amplitude phase modulation

    100G flexible IM-DD 850 nm VCSEL transceiver with fractional bit rate using eight-dimensional PAM

    No full text
    \u3cp\u3eWe demonstrate a novel optical transceiver scheme with a net flexible bit rate up to 100Gbit/s with 5 Gbit/s granularity, using an eight-dimensional modulation format family, and investigate its performance on capacity, reach, and power tolerance.\u3c/p\u3

    107.5 Gb/s 850 nm multi- and single-mode VCSEL transmission over 10 and 100 m of multi-mode fiber

    No full text
    First time successful 107.5 Gb/s MultiCAP 850 nm OM4 MMF transmissions over 10 m with multi-mode VCSEL and up to 100 m with single-mode VCSEL are demonstrated, with BER below 7% overhead FEC limit measured for each case. First time successful 107.5 Gb/s MultiCAP 850 nm OM4 MMF transmissions over 10 m with multi-mode VCSEL and up to 100 m with single-mode VCSEL are demonstrated, with BER below 7% overhead FEC limit measured for each case
    corecore