8 research outputs found
Tunable magnetic properties of arrays of Fe(110) nanowires grown on kinetically-grooved W(110) self-organized templates
We report a detailed magnetic study of a new type of self-organized nanowires
disclosed briefly previously [B. Borca et al., Appl. Phys. Lett. 90, 142507
(2007)]. The templates, prepared on sapphire wafers in a kinetically-limited
regime, consist of uniaxially-grooved W(110) surfaces, with a lateral period
here tuned to 15nm. Fe deposition leads to the formation of (110) 7 nm-wide
wires located at the bottom of the grooves. The effect of capping layers (Mo,
Pd, Au, Al) and underlayers (Mo, W) on the magnetic anisotropy of the wires was
studied. Significant discrepancies with figures known for thin flat films are
evidenced and discussed in terms of step anisotropy and strain-dependent
surface anisotropy. Demagnetizing coeffcients of cylinders with a triangular
isosceles cross-section have also been calculated, to estimate the contribution
of dipolar anisotropy. Finally, the dependence of magnetic anisotropy with the
interface element was used to tune the blocking temperature of the wires, here
from 50K to 200 K
Beyond first-order finite element schemes in micromagnetics
International audienc