6 research outputs found

    NASA Orbital Debris Engineering Model ORDEM2008 (Beta Version)

    Get PDF
    This is an interim document intended to accompany the beta-release of the ORDEM2008 model. As such it provides the user with a guide for its use, a list of its capabilities, a brief summary of model development, and appendices included to educate the user as to typical runtimes for different orbit configurations. More detailed documentation will be delivered with the final product. ORDEM2008 supersedes NASA's previous model - ORDEM2000. The availability of new sensor and in situ data, the re-analysis of older data, and the development of new analytical techniques, has enabled the construction of this more comprehensive and sophisticated model. Integrated with the software is an upgraded graphical user interface (GUI), which uses project-oriented organization and provides the user with graphical representations of numerous output data products. These range from the conventional average debris size vs. flux magnitude for chosen analysis orbits, to the more complex color-contoured two-dimensional (2-D) directional flux diagrams in terms of local spacecraft pitch and yaw

    NASA's New Orbital Debris Engineering Model, ORDEM2010

    Get PDF
    This paper describes the functionality and use of ORDEM2010, which replaces ORDEM2000, as the NASA Orbital Debris Program Office (ODPO) debris engineering model. Like its predecessor, ORDEM2010 serves the ODPO mission of providing spacecraft designers/operators and debris observers with a publicly available model to calculate orbital debris flux by current-state-of-knowledge methods. The key advance in ORDEM2010 is the input file structure of the yearly debris populations from 1995-2035 of sizes 10 micron - 1 m. These files include debris from low-Earth orbits (LEO) through geosynchronous orbits (GEO). Stable orbital elements (i.e., those that do not randomize on a sub-year timescale) are included in the files as are debris size, debris number, material density, random error and population error. Material density is implemented from ground-test data into the NASA breakup model and assigned to debris fragments accordingly. The random and population errors are due to machine error and uncertainties in debris sizes. These high-fidelity population files call for a much higher-level model analysis than what was possible with the populations of ORDEM2000. Population analysis in the ORDEM2010 model consists of mapping matrices that convert the debris population elements to debris fluxes. One output mode results in a spacecraft encompassing 3-D igloo of debris flux, compartmentalized by debris size, velocity, pitch, and yaw with respect to spacecraft ram direction. The second output mode provides debris flux through an Earth-based telescope/radar beam from LEO through GEO. This paper compares the new ORDEM2010 with ORDEM2000 in terms of processes and results with examples of specific orbits

    The Geosynchrous Environment for ORDEM2010

    Get PDF
    The new version of the NASA Orbital Debris Engineering Model (ORDEM2010) requires accurate populations as input files to be used in the calculation of orbital debris fluxes on chosen spacecraft or within telescope/radar fields-of-view. Populations in ORDEM2010 are derived from an amalgam of data and modeling. Geosynchronous orbit (GEO) satellites and debris form a distinct ORDEM2010 population that is applied to the distinct analysis of GEO fluxes. Low Earth orbit (LEO) populations are derived by combining modeling results with ground-based data, primarily from radar systems, and in-situ data. In contrast, the GEO region has not been as well observed. The distance between orbiting objects and ground-based instruments precludes the wide usage of radar as a means of observation. Instead, optical instruments dominate in the study of GEO. Of these, the NASA sponsored Michigan Orbital Debris Survey Telescope (MODEST) has provided 3 years of surveys of the region detecting cataloged objects (correlated targets) and non-cataloged objects (uncorrelated targets) to an estimated minimum size of 30 cm. This paper describes the methods of combining NASA launch database and satellite breakup and orbital propagation modeling with MODEST 2004-to-2006 uncorrelated target data to attain a GEO environment to 10 cm. Assuming that MODEST uncorrelated targets are breakup debris allows for the extension of the debris survey data to smaller sizes using the NASA Standard Breakup Model. Each orbit within the total resulting GEO population is marked by a random argument of perigee and nearly constant mean motion, eccentricity, inclination, and right ascension of ascending node (RAAN) over the nearly 3 years of observation. Lack of published references of past breakups in GEO is mitigated by the orbital propagation of MODEST extended data to 1995 (the beginning epoch of ORDEM2010)

    An Imaging System for Automated Characteristic Length Measurement of Debrisat Fragments

    Get PDF
    The debris fragments generated by DebriSat's hypervelocity impact test are currently being processed and characterized through an effort of NASA and USAF. The debris characteristics will be used to update satellite breakup models. In particular, the physical dimensions of the debris fragments must be measured to provide characteristic lengths for use in these models. Calipers and commercial 3D scanners were considered as measurement options, but an automated imaging system was ultimately developed to measure debris fragments. By automating the entire process, the measurement results are made repeatable and the human factor associated with calipers and 3D scanning is eliminated. Unlike using calipers to measure, the imaging system obtains non-contact measurements to avoid damaging delicate fragments. Furthermore, this fully automated measurement system minimizes fragment handling, which reduces the potential for fragment damage during the characterization process. In addition, the imaging system reduces the time required to determine the characteristic length of the debris fragment. In this way, the imaging system can measure the tens of thousands of DebriSat fragments at a rate of about six minutes per fragment, compared to hours per fragment in NASA's current 3D scanning measurement approach. The imaging system utilizes a space carving algorithm to generate a 3D point cloud of the article being measured and a custom developed algorithm then extracts the characteristic length from the point cloud. This paper describes the measurement process, results, challenges, and future work of the imaging system used for automated characteristic length measurement of DebriSat fragments

    A Comparison of the SOCIT and DebriSat Experiments

    Get PDF
    This paper explores the differences between, and shares the lessons learned from, two hypervelocity impact experiments critical to the update of orbital debris environment models. The procedures and processes of the fourth Satellite Orbital Debris Characterization Impact Test (SOCIT) were analyzed and related to the ongoing DebriSat experiment. SOCIT was the first hypervelocity impact test designed specifically for satellites in Low Earth Orbit (LEO). It targeted a 1960's U.S. Navy satellite, from which data was obtained to update pre-existing NASA and DOD breakup models. DebriSat is a comprehensive update to these satellite breakup models- necessary since the material composition and design of satellites have evolved from the time of SOCIT. Specifically, DebriSat utilized carbon fiber, a composite not commonly used in satellites during the construction of the US Navy Transit satellite used in SOCIT. Although DebriSat is an ongoing activity, multiple points of difference are drawn between the two projects. Significantly, the hypervelocity tests were conducted with two distinct satellite models and test configurations, including projectile and chamber layout. While both hypervelocity tests utilized soft catch systems to minimize fragment damage to its post-impact shape, SOCIT only covered 65% of the projected area surrounding the satellite, whereas, DebriSat was completely surrounded cross-range and downrange by the foam panels to more completely collect fragments. Furthermore, utilizing lessons learned from SOCIT, DebriSat's post-impact processing varies in methodology (i.e., fragment collection, measurement, and characterization). For example, fragment sizes were manually determined during the SOCIT experiment, while DebriSat utilizes automated imaging systems for measuring fragments, maximizing repeatability while minimizing the potential for human error. In addition to exploring these variations in methodologies and processes, this paper also presents the challenges DebriSat has encountered thus far and how they were addressed. Accomplishing DebriSat's goal of collecting 90% of the debris, which constitutes well over 100,000 fragments, required addressing many challenges stemming from the very large number of fragments. One of these challenges arose in identifying the foam-embedded fragments. DebriSat addressed this by X-raying all of the panels once the loose debris were removed, and applying a detection algorithm developed in-house to automate the embedded fragment identification process. It is easy to see how the amount of data being compiled would be outstanding. Creating an efficient way to catalog each fragment, as well as archiving the data for reproducibility also posed a great challenge for DebriSat. Barcodes to label each fragment were introduced with the foresight that once the characterization process began, the datasheet for each fragment would have to be accessed again quickly and efficiently. The DebriSat experiment has benefited significantly by leveraging lessons learned from the SOCIT experiment along with the technological advancements that have occurred during the time between the experiments. The two experiments represent two ages of satellite technology and, together, demonstrate the continuous efforts to improve the experimental techniques for fragmentation debris characterization

    Geosynchronous Environment for ORDEM2008

    No full text
    The new version of the NASA Orbital Debris Engineering Model (ORDEM2008) requires accurate populations as input template files to be used in the calculation of orbital debris fluxes on chosen spacecraft or within telescope/radar fields-of-view. Populations in ORDEM2008 are derived from a consortium of data and modeling. Geosynchronous (GEO) satellites and debris form a distinct ORDEM2008 population that is applied to the distinct analysis of GEO fluxes. Low Earth orbit (LEO) populations are derived by combining modeling results with ground-based data, primarily from radar systems and in-situ data. In contrast, the GEO region has not been as well observed. The distance between orbiting objects and ground-based instruments precludes the wide usage of radar as a means of observation. Instead, optical instruments dominate in the study of GEO. Of these, the NASA sponsored Michigan Orbital Debris Survey Telescope (MODEST) has provided 4 years of surveys of the region detecting cataloged objects (correlated targets) and non-cataloged objects (uncorrelated targets) to an estimated minimum size of 30 cm. This paper describes the methods of combining NASA launch database and satellite breakup and orbital propagation modeling with MODEST 2004-to-2006 uncorrelated target data to attain a GEO environment to 10 cm. Assuming that MODEST uncorrelated targets are breakup debris allows for the extension of the debris survey data to smaller sizes with the NASA Standard Breakup model. Each orbit within the total resulting GEO population is marked by a random argument of perigee and nearly constant mean motion, eccentricity, inclination, and node over the nearly 3 years of observation. Lack of published references of past breakups in GEO is mitigated by the orbital propagation of MODEST extended data to 1995 (the beginning epoch of ORDEM2008)
    corecore