74 research outputs found

    Synthesizing Normalized Faces from Facial Identity Features

    Full text link
    We present a method for synthesizing a frontal, neutral-expression image of a person's face given an input face photograph. This is achieved by learning to generate facial landmarks and textures from features extracted from a facial-recognition network. Unlike previous approaches, our encoding feature vector is largely invariant to lighting, pose, and facial expression. Exploiting this invariance, we train our decoder network using only frontal, neutral-expression photographs. Since these photographs are well aligned, we can decompose them into a sparse set of landmark points and aligned texture maps. The decoder then predicts landmarks and textures independently and combines them using a differentiable image warping operation. The resulting images can be used for a number of applications, such as analyzing facial attributes, exposure and white balance adjustment, or creating a 3-D avatar

    Shape and Illumination from Shading Using the Generic Viewpoint Assumption

    Get PDF
    The Generic Viewpoint Assumption (GVA) states that the position of the viewer or the light in a scene is not special. Thus, any estimated parameters from an observation should be stable under small perturbations such as object, viewpoint or light positions. The GVA has been analyzed and quantified in previous works, but has not been put to practical use in actual vision tasks. In this paper, we show how to utilize the GVA to estimate shape and illumination from a single shading image, without the use of other priors. We propose a novel linearized Spherical Harmonics (SH) shading model which enables us to obtain a computationally efficient form of the GVA term. Together with a data term, we build a model whose unknowns are shape and SH illumination. The model parameters are estimated using the Alternating Direction Method of Multipliers embedded in a multi-scale estimation framework. In this prior-free framework, we obtain competitive shape and illumination estimation results under a variety of models and lighting conditions, requiring fewer assumptions than competing methods.National Science Foundation (U.S.). Directorate for Computer and Information Science and Engineering/Division of Information & Intelligent Systems (Award 1212928)Qatar Computing Research Institut
    corecore