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Summary

This thesis studies image deblurring problems using a total variation based model, with

a non-negativity constraint. The addition of the non-negativity constraint improves the

quality of the solutions but makes the process of solution a difficult one. The contribution

of our work is a fast and robust numerical algorithm to solve the non-negatively constrained

problem. To overcome the non-differentiability of the total variation norm, we formulate the

constrained deblurring problem as a primal-dual program which is a variant of the formu-

lation proposed by Chan, Golub and Mulet [1] (CGM) for unconstrained problems. Here,

dual refers to a combination of the Lagrangian and Fenchel duals. To solve the constrained

primal-dual program, we use a semi-smooth Newton’s method. We exploit the relationship,

established in [2], between the semi-smooth Newton’s method and the Primal-Dual Active

Set (PDAS) method to achieve considerable simplification of the computations. The main

advantages of our proposed scheme are: no parameters need significant adjustment, a stan-

dard inverse preconditioner works very well, quadratic rate of local convergence (theoretical

and numerical), numerical evidence of global convergence, and high accuracy of solving the

KKT system. The scheme shows robustness of performance over a wide range of parame-

ters. A comprehensive set of numerical comparisons are provided against other methods

to solve the same problem which show the speed and accuracy advantages of our scheme.

The Matlab and C (Mex) code for all the experiments conducted in this thesis may be

downloaded from http://www.math.nus.edu.sg/∼mhyip/nncgm/.
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Chapter 1

Introduction

1.1 Image Deblurring and Denoising

In this thesis, we study models to solve image deblurring and denoising problems. During

the image acquisition process, images can suffer from various types of degradation. Two of

the most common problems are that of noise and blurring. Noise is introduced because of

the behaviour of the camera capture circuitry and exposure conditions. Blurring may be

introduced due to a combination of physical phenomena and camera processes. For example,

during the acquisition of satellite (atmospheric) images, the effect of the atmosphere acts

as a blurring filter to blur the captured images of heavenly bodies.

Image blur is usually modelled as a convolution of the image data with a blurring kernel.

The kernel may vary depending on the type of blur. Two common blurs are Gaussian blur

and out-of-focus blur. Image noise is usually modelled as additive Gaussian distributed

noise or uniformly distributed noise. Denoising can be considered to be a special case of

deblurring with identity blur.

Digital images are represented as two-dimensional arrays f(x, y). where each integer

coordinate (x, y) represents a single pixel. At each pixel, an integer value which varies

between 0 and 255, for images of bit depth 8, represents the intensity or gray level of the

pixel. 0 represents the color black, 255 represents the color white. All gray levels lie in

between these two exteme values. Image deblurring may be represented as f = k ∗ u + n,

where f is the observed degraded image, u is the original image, k is the blurring function
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and n is the additive noise.

Deblurring and denoising of images is important for scientific and aesthetic reasons. For

example, police agencies require deblurring of images captured from security cameras; de-

noising of images helps significantly in their compression; deblurring of atmospheric images

is useful for the accurate identification of the heavenly bodies. See [3], [4] for more examples

and overview.

A number of different models have been proposed to solve deblurring and denoising

problems. It is not our purpose here to study all the different models. We restrict our

attention to a model based on the Total Variation, which has proven to be succesful in

solving a number of different image processing problems, including deblurring and denoising.

1.2 Total Variation Minimization Problems

Total Variation (TV) minimization problems were first introduced into the context of image

denoising in the seminal paper [5] by Rudin, Osher and Fatemi. They have proven to be

successful in dealing with image denoising and deblurring problems [1,6–8], image inpainting

problems [9], and image decomposition [10]. Recently, they have also been applied in various

areas such as CT imaging [11,12] and confocal microscopy [13]. The main advantage of the

TV formulation is the ability to preserve edges in the image. This is due to the piecewise

smooth regularization property of the TV norm.

A discrete version of the unconstrained TV deblurring problem proposed by Rudin et al.

in [5] is given by

min
u

1

2
‖Ku− f‖2 + β‖u‖TV , (1.1)

where ‖ · ‖ is the l2 norm, f is the observed (blurred and noisy) data, K is the blurring

operator corresponding to a point spread function (PSF), u is the unknown data to be

recovered, and ‖ · ‖TV is the discrete TV regularization term. We assume that the m ×

n images u = (ui,j) and f = (fi,j) have been rearranged into a vector form using the

lexicographical ordering. Thus, K is an mn×mn matrix. The discrete TV norm is defined
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as

‖u‖TV :=

m−1
∑

i=1

n−1
∑

j=1

|(∇u)ij |, where (∇u)ij =





ui+1,j − ui,j

ui,j+1 − ui,j



 . (1.2)

Here, i and j refer to the pixel indices in the image and | · | is the Euclidean norm for R
2.

Regularization is necessary due to the presence of noise, see [14]. Without regularization,

noise amplification would be so severe that the resulting output data is useless, especially

when K is very ill-conditioned. Even when K is well-conditioned, regularization is still

needed to remove noise. The regularization parameter β needs to be selected as a tradeoff

between oversmoothing and noise amplification. When K = I, the deblurring problem

becomes a pure denoising problem. When K is derived from a non-trivial PSF (i.e. apart

from the Dirac Delta function), the problem is harder to solve since the pixels of f are

coupled together to a greater degree. When K is unknown, the problem becomes a blind

deblurring problem [6,15]. In this paper, we assume that the PSF, and hence K, is known.

One of the major reasons for ongoing research into TV deblurring problems is that

the non-differentiability of the TV norm makes it a difficult task to find a fast numerical

method. The (formal) first order derivative of the TV norm involves the term ∇u
|∇u| which

is degenerate when |∇u| = 0. This could happen in flat areas of the image. Methods that

can effectively deal with such singularities are still actively sought.

A number of numerical methods have been proposed for unconstrained TV denoising

and/or deblurring models. These include partial differential equation based methods such as

explicit [5], semi-implicit [16] or operator splitting schemes [17] and fixed point iterations [7].

Optimization oriented techniques include Newton-like methods [1], [18], [8], multilevel [19],

second order cone programming [20] and interior-point methods [21]. Recently, graph based

approaches have also been studied [22]. It is also possible to apply Additive Operator

Splitting (AOS) based schemes such as those proposed originally in [23] to solve in a fast

manner, the Euler-Lagrange equation corresponding to the primal problem.

Carter [24] presents a dual formulation of the TV denoising problem and studies some

primal-dual interior-point and primal-dual relaxation methods. Chambolle [25] presents a

semi-implicit scheme and Ng et al. [26] present a semi-smooth Newton’s method for solving

the same dual problem. These algorithms have the advantage of not requiring an extra
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regularization of the TV norm. Being faithful to the original TV norm without applying

any regularization, these methods often require many iterations to converge to a moderate

level of accuracy for the underlying optimization problem is not strictly convex.

Hintermüller and Kunisch [27] have derived a dual version of an

anisotropic TV deblurring problem. In the anisotropic formulation, the TV norm ‖u‖TV in

Eq. (1.2) is replaced with
∑

i,j
|(∇u)ij |1 where | · |1 is the l1 norm for R

2. This makes the dual

problem a quadratic one with linear bilateral constraints. In contrast, the isotropic formu-

lation is based on the l2 norm and has the advantage of being rotation invariant. However,

the dual problem corresponding to the isotropic TV norm has quadratic constraints which

are harder to deal with. Hintermüller and Kunisch have solved the anisotropic formula-

tion using a primal-dual active-set method, but the algorithm requires several additional

regularization terms.

Chan, Golub and Mulet present a primal-dual numerical method [1]. This algorithm

(which we henceforth call the CGM algorithm) simultaneously solves both the primal and

(Fenchel) dual problems. In this work, we propose a variant of their algorithm to handle

the non-negativity constraint.

It should be noted that many of the aforementioned numerical methods are specific to

denoising and cannot be readily extended to a general deblurring problem. Fewer papers

focus on TV deblurring problems. Still fewer focus on constrained TV deblurring prob-

lems. But our method works for the more difficult non-negativity constrained isotropic TV

deblurring problem and is faster than other existing methods for solving the same problem.

Image values which represent physical quantities such as photon count or energies are

often non-negative. For example, in applications such as gamma ray spectral analysis [28],

astronomical imaging and spectroscopy [29], the physical characteristics of the problem

require the recovered data to be non-negative. An intuitive approach to ensuring non-

negativity is to solve the unconstrained problem first, followed by setting the negative

components of the resulting output to zero. However, this approach may result in the

presence of spurious ripples in the reconstructed image. Chopping off the negative values

may also introduce patches of black color which could be visually unpleasant. In biomedical

imaging, the authors in [12, 13] also stressed the importance of non-negativity in their TV
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based models. But they obtain non-negative results by tuning a regularization parameter

similar to the β in Eq. (1.1). This may cause the results to be under- or over-regularized.

Moreover, there is no guarantee that such a choice of the parameter exists. Therefore, a

non-negativity constraint on the deblurring problem is a natural requirement.

The non-negatively constrained TV deblurring problem is given by

min
u,u≥0

1

2
‖Ku− f‖2 + β‖u‖TV . (1.3)

This problem is convex for all K and is strictly convex when K is of full rank. We shall

assume that K is of full rank so that the problem has a unique solution. For denoising

problems, imposing the non-negativity constraint becomes unnecessary for it is equivalent

to solving the unconstrained problem followed by setting the negative components to zero.

For deblurring problems, even if the observed data are all positive, the deblurred result may

contain negative values if non-negativity is not enforced.

Schafer et al. [28], have studied the non-negativity constraint on gamma-ray spectral

data and synthetic data. They have demonstrated that such a constraint helps not only

in the interpretability of the results, but also helps in the reconstruction of high-frequency

information beyond the Nyquist frequency (in case of bandlimited signals). Reconstruction

of the high-frequency information is an important requirement for image processing since

the details of the image are usually the edges.

Fig. 1.1 gives another example. The reconstructions 1.1(d) and 1.1(e) based on the

unconstrained primal-dual method presented in [1] show a larger number of spurious spikes.

It is also clear that the intuitive method of solving the unconstrained problem and setting

the negative components to zero still causes a number of spurious ripples. In contrast, the

constrained solution 1.1(c) has much fewer spurious ripples in the recovered background.

The unconstrained results have larger l2 reconstruction error compared to the constrained

reconstruction.

Some examples showing the increased reconstruction quality of imposing non-negativity

can be found in [30]. Studies on other non-negativity constrained deblurring problems

such as Poisson noise model, linear regularization and entropy-type penalty can be found

in [31,32].
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Figure 1.1: Comparison of constrained and unconstrained deblurring. (a) Original syn-

thetic data. (b) Blurred and noisy data with negative components. (c) Non-negatively

constrained NNCGM result; l2 error = 361.43. (d) Unconstrained CGM result; l2 error =

462.74. (e) Same as (d) but with negative components set to 0; l2 error = 429.32.
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Very few numerical approaches have been studied for non-negatively constrained total

variation deblurring problems. In [30, 33], a projected Newton’s method based on the

algorithm of [34] is presented to solve the non-negatively constrained problem. We study

the performance of this algorithm in this work. Fu et al. [21] present an algorithm based

on interior-point methods, along with very effective preconditioners. The total number of

outer iterations is small. However, the inner iterations, corresponding to Newton steps in the

interior-point method, take long to converge. Moreover, Fu et al. study the anisotropic TV

formulation, which can be reduced to a linear programming problem, whereas the isotropic

formulation is more difficult to solve. We have studied the interior-point method for the

isotropic TV norm and observed significant slow down in the inner iterations as the outer

iterations proceed. This is because of the increased ill-conditioning of the linear systems

that are to be solved in the inner iterations. In contrast, the primal-dual method presented

in this work does not suffer from this drawback – the number of inner conjugate gradient

(CG) iterations [35] shows no significant increase as the system approaches convergence.

The rest of the thesis is organized as follows: Chapter 2 presents our proposed primal-

dual method (which we call NNCGM) for non-negatively constrained TV deblurring, along

with two other algorithms to which we compare the performance of the NNCGM algorithm.

These two algorithms are a dual-only Alternating Minimization method and a primal-only

Projected Newton’s method. Chapter 3 provides numerical results to compare NNCGM

with these two methods and also shows the robustness of NNCGM. Chapter 4 gives conclu-

sions. Appendix A gives the technical details of the derivation of the primal-dual formulation

and the NNCGM algorithm. Appendix B gives the default parameters that were used for

all the numerical results given in this thesis.

A paper [36] based on the results presented in this thesis has recently (August 2007)

been accepted for publication in the IEEE Transactions on Image Processing.



Chapter 2

The Non-Negatively Constrained

Primal-Dual Program

2.1 Dual and Primal-Dual Approaches

Solving the primal TV deblurring problem, whether unconstrained or constrained, poses

numerical difficulties due to the non-differentiability of the TV norm. This difficulty is

usually overcome by the addition of a perturbation ε. That is, to replace |∇u| with |∇u|ε =
√

|∇u|2 + ε which is a differentiable function. The trade-off in choosing this smoothing

parameter ε is the reconstruction error versus the speed of convergence. The smaller the

perturbation term, the more accurate is the final reconstruction. However, convergence

takes longer since the corresponding objective function to be optimized becomes increasingly

closer to the original non-differentiable objective function. See [37] for more details on

convergence in relation to the value of ε.

Owing to the above numerical difficulties, some researchers have studied a dual approach

to the TV deblurring problem. Carter [24] and Chambolle [25] present a dual problem based

on the Fenchel dual formulation for the TV denoising problem. See [38] for details on the

Fenchel dual. Chambolle’s scheme is based on the minimization problem

min
p,|pi,j |≤1

‖f + βdivp‖2. (2.1)

8
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Here,

pi,j =





pxi,j

pyi,j



 (2.2)

is the dual variable at each pixel location with homogeneous Dirichlet boundary conditions

px0,j = pxm,j = 0 for all j and pyi,0 = pyi,n = 0 for all i. The vector p is a concatenation of all

pi,j . The discrete divergence operator div is defined such that the vector divp is given by

(divp)i,j = pxi,j − pxi−1,j + pyi,j − pyi,j−1. (2.3)

It can be shown (see [25]) that (−div)T = ∇ defined in (1.2). The constraints |pi,j | ≤ 1 are

quadratic after squaring both sides. The update is given by

pn+1
i,j =

pni,j + τβ(∇(βdivp+ g))i,j

1 + τβ|(∇(βdivp+ g))i,j |
, ∀ i, j,

where τ is the step size (which, as shown in [25], needs to be less than 1/8). Once the

optimal solution, denoted by p∗, is obtained, the denoised image u∗ can be reconstructed

by u∗ = βdivp∗ + f . An interesting aspect of the algorithm is that even without the ε-

perturbation of the TV norm, the objective function becomes a quadratic function which is

infinitely differentiable. But the dual variable p becomes constrained. Unfortunately, being

based on a steepest descent technique, the algorithm slows down towards convergence and

requires a large number of iterations for even a moderate accuracy.

Hintermüller and Kunisch [27] have also used the Fenchel dual approach to formulate a

constrained quadratic dual problem and to derive a very effective method. They consider

the case of anisotropic TV norm so that the dual variable is bilaterally constrained, i.e.

−1 ≤ pi,j ≤ 1, whereas the constraints in Eq. (2.1) are quadratic. The smooth (quadratic)

nature of the dual problem makes it much more amenable to solution by a Newton-like

method. To deal with the bilateral constraints on p, the authors propose to use the Primal-

Dual Active-Set (PDAS) algorithm. Consider the general quadratic problem

min
y≤ψ

1

2
〈y,Ay〉 − 〈f, y〉

whose KKT system [39] is given by

Ay + λ = f,

C(y, λ) = 0,
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where C(y, λ) = λ− max(0, λ+ c(y − ψ)) for an arbitrary positive constant c, and λ is the

Lagrange multiplier. The max operation is understood to be component-wise. Then the

PDAS algorithm is given by

1. Initialize y0, λ0. Set k = 0.

2. Set Ik = {i : λki + c(yk − ψ)i ≤ 0} and Ak = {i : λki + c(yk − ψ)i > 0}.

3. Solve

Ayk+1 + λk+1 = f,

yk+1 = ψ on Ak,

λk+1 = 0 on Ik.

4. Stop, or set k = k + 1 and return to Step 2).

In their work in [2], the authors show that the PDAS algorithm is equivalent to a semi-

smooth Newton’s method for a class of optimization problems that includes the dual

anisotropic TV deblurring problem. Local superlinear convergence results are derived.

Conditional global convergence results based on the properties of the matrix K are also

derived. However, their formulation only works for the anisotropic TV norm and the dual

problem requires several extra regularization terms to achieve a numerical solution.

Chan et al. [1] present a primal-dual numerical method which has a much better global

convergence behaviour than a primal-only method for the unconstrained problem. As the

name suggests, this algorithm simultaneously solves both the primal and dual problems.

The algorithm is derived as a Newton step for the following equations

p|∇u|ε −∇u = 0,

−βdivp−KT f +Au = 0,

where A := KTK + αI. At each Newton step, both the primal variable u and the dual

variable p are updated. The dual variable can be thought of as helping to overcome the

singularity in term div
(

∇u
|∇u|

)

. An advantage of this method is that a line search is required

only for the dual variable p to maintain the feasibility |pi,j | ≤ 1 whereas a line search for u
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is unnecessary. Furthermore, while still requiring an ε-regularization as above, it converges

fast even when the perturbation ε is small. Our algorithm is inspired by the CGM method.

But the CGM method does not handle the non-negativity constraint on u.

Note that dual-only methods for TV deblurring need an extra l2 regularization which is

a disadvantage for these methods. This is because the matrix (KTK)−1 is involved and one

needs to replace it by (KTK + αI)−1 to make it well-conditioned. In denoising problems,

we have K = I so that the ill-conditioning problem of (KTK)−1 in dual methods is absent.

But in deblurring problems, some extra care needs to be taken. The modified TV deblurring

problem is then given by

min
u,u≥0

1

2
‖Ku− f‖2 + β‖u‖TV +

α

2
‖u‖2. (2.4)

Primal-dual methods such as CGM and our NNCGM do not require the extra l2 regular-

ization term, i.e. α = 0. This is because KTK instead of (KTK)−1 is involved in the

primal-dual formulation. See Appendix A.

2.2 NNCGM Algorithm

As stated above, our algorithm is inspired by the CGM method. Hence we call it the

NNCGM algorithm (Non-Negatively constrained Chan-Golub-Mulet). We derived the dual

of the constrained problem (2.4) as follows:

min
p,|pi,j |≤1

min
λ,λ≥0

{

1

2
‖B1/2(KT f + βdivp+ λ)‖2

}

, (2.5)

whereB := (KTK+αI)−1. The dual variable p has constraints on it arising from the Fenchel

transform of the TV norm in the primal objective function Eq. (2.4). The variable λ has

a non-negativity constraint since it arises as a Lagrange multiplier for the non-negativity

constraint on u. See Appendix A for the detailed derivation. We remark that the parameter

α can be set to 0 in our method, see Chapter 2.1.

The primal-dual program associated with the problem (2.5) is given by:

p|∇u|ε −∇u = 0, (2.6)

−βdivp−KT f − λ+Au = 0, (2.7)

λ− max{0, λ− cu} = 0, (2.8)
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where c is an arbitrary positive constant. We have identified the Lagrange multiplier for

λ ≥ 0 with the primal variable u. This leads to the presence of u in the system. Note that

we have transformed all inequality constraints and complementarity conditions on u and λ

into the single equality constraint in Eq. (2.8).

The NNCGM algorithm is essentially a semi-smooth Newton’s method for the system

in Eq. (2.6)-(2.8). It has been shown by Hintermüller et al. [27] that the semi-smooth

Newton’s method is equivalent to the PDAS algorithm for a certain class of optimization

problems. Although the equivalency does not hold in our problem, the two methods are

still highly related. We exploit this relationship, and use some ideas of the PDAS algorithm

to significantly simplify the computations involved in solving Eq. (2.6)-(2.8), see Appendix

A. The full NNCGM algorithm is as follows:

1. Select parameters based on Table B.1.

2. Initialize p0, u0, λ0. Set k = 0.

3. Set Ik = {i : λki − cuki ≤ 0} and Ak = {i : λki − cuki > 0}. In the rest of the algorithm

below, these two quantities are represented as I and A respectively.

4. Compute δukI by solving the linear system using PCG (cf. Eq. (A.21)):

DI

[

−βdiv
1

|∇uk|ε

(

I −
pk(∇uk)T + (∇uk)(pk)T

2|∇uk|ε

)

∇ +A

]

DT
I δu

k
I

= g(pk, uk, λk). (2.9)

The details on the preconditioner used are given in Section 2.3.

5. Compute δpk by (cf. Eq. (A.19)):

δpk =
1

|∇uk|ε
×

[(

I −
pk(∇uk)T

|∇uk|ε

)

∇(DT
I δu

k
I −DT

Au
k
A) − F1(p

k, uk, λk)

]

.

6. Compute δλkA by (cf. Eq. (A.18)):

δλkA = −βDAdivδpk +AAIδu
k
I +DAF2(p

k, uk, λk) −AAu
k
A.

7. Compute the step size s by s = ρ supγ{|p
k
i,j + γδpki,j | ≤ 1 ∀ i, j}.
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8. Update

pk+1 = pk + sδpk,

uk+1
I = ukI + δukI ,

uk+1
A = 0,

λk+1
I = 0,

λk+1
A = λkA + δλkA.

9. Either stop if the desired KKT residual accuracy is reached, or set k = k + 1 and

go back to Step 3). The KKT residual is given by
(

‖F1‖
2 + ‖F2‖

2 + ‖F3‖
2
)1/2

where

F1, F2, F3 are defined by the left hand side of Eq. (2.6)-(2.8).

At every iteration, the current iterates for λ and u are used to predict the active (Ak)

and inactive (Ik) sets for the next iteration. This is the fundamental mechanism of the

PDAS method as presented in [2]. A line search is only required in Step 7), for p. We found

numerically that there was no need to have a line search in the u and λ variables. Occasional

infeasibility (i.e. violation of non-negativity) of these variables during the iterations did not

prevent convergence. The algorithm requires the specification of the following parameters:

1. c: c is a positive value used to determine the active and inactive sets at every iteration,

see Step 3) above. In our tests we found that the performance of the algorithm is

independent of the value of c, as long as c is a positive value. This is consistent with

the results obtained in [2]. Hence using a fixed value of c was sufficient for all our

numerical tests.

2. ρ: Setting ρ to 0.99 worked for all our numerical tests. This parameter is used only

to make the step size a little conservative.

3. ε: The perturbation constant is to be selected at a reasonably small value to achieve

a trade-off between reconstruction error and time for convergence. We found that

setting this to 10−2 worked for all cases. Reducing it further did not significantly

reduce the reconstruction error. See Chapter 3 for results.
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The regularization parameter β decides the trade-off between the reconstruction error and

noise amplification. It is a part of the deblurring model, rather than our algorithm. The

value of β must be selected carefully for any TV deblurring algorithm.

Our NNCGM algorithm was inspired by using the CGM algorithm [1] to handle the TV

deblurring, and the PDAS algorithm [2] to handle the non-negativity constraint. The CGM

algorithm was shown to be very fast in solving the unconstrained TV deblurring problem,

and involved a minimal number of parameters. It also handles the inequality constraint on

the dual variable p by a simple line search. Furthermore, the numerical results in [1] show a

locally quadratic rate of convergence. The PDAS algorithm handles unilateral constraints

effectively. While Hintermüller and Kunisch [27] apply PDAS to handle the constraints

−1 ≤ p ≤ 1, we apply it to handle the non-negativity constraints u, λ ≥ 0. Under our

formulation, the quadratic constraints |pi,j | ≤ 1 for all i, j are implied Eq. (2.6). But we

found it more convenient to maintain the feasibility of these quadratic constraints by a

line search as in the CGM method. This can make sure that the linear system Eq. (2.9)

to solve in each Newton step is positive definite. Since the NNCGM method is basically

a semi-smooth Newton’s method and the system of equations to solve in our formulation

is strongly semi-smooth, it can therefore be expected that the NNCGM algorithm should

exhibit a quadratic rate of local convergence. The numerical results of Chapter 3 show a

locally quadratic rate of convergence.

2.3 Preconditioners

The most computationally intensive step of the NNCGM algorithm is Step 4) which involves

solving the linear system in Eq. (2.9). Though significantly smaller than the original

linear system (A.17) obtained by linearizing Eq. (2.6)-(2.8), it is still a large system.

We therefore explored the use of preconditioners, and discovered that the standard ILU

preconditioner [35] and the Factorized Banded Inverse Preconditioner (FBIP) [40] worked

well to speed up the solution of the linear system. The FBIP preconditioner, in particular,

worked extremely well. Using the FBIP preconditioner to solve the linear system requires

essentially O(N logN) operations, where N is the total number of pixels in the image. This
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is including the use of FFT’s for computations involving the matrix K.

The original system Eq. (A.17) has different characteristics in each of its blocks. It is

therefore harder to construct an effective preconditioner. In contrast, the reduced system

Eq. (2.9) has a simpler structure so that standard preconditioners work well.

2.4 Comparative Algorithms

We compare the performance of the NNCGM with two other algorithms: a primal-only

Projected Newton’s (PN) algorithm, and a dual-only Alternating Minimization (AM) algo-

rithm. To the best of our knowledge, the PN algorithm is the only algorithm proposed for

solving non-negativity constrained isotropic TV deblurring problems that is designed for

speed. The AM algorithm, derived by us, is a straightforward and natural way to reduce

the problem into subproblems that are solvable by existing solvers. A common way used

in application-oriented literature is to cast the TV minimization problem as a maximum

a posteriori estimation problem and then apply the expectation maximization (EM) algo-

rithm with multiplicative updates to ensure non-negativity [41]. The algorithm is usually

straightforward to implement. However, it is well-known that the convergence of EM-type

algorithms is slow. We experimented with a number of other algorithms as well, but the

performance of those algorithms was quite poor. For example, we tried using a barrier

method to maintain feasibility, but the method was very slow. The method given in Fu

et al.’s paper, [21] uses linear programming. Since they use the anisotropic model for the

TV, it is not a problem to maintain feasibility in their approach. We tried to adopt this

approach for our isotropic formulation, but it is difficult to maintain the feasibility of the

problem. Other interior-point methods require a feasible initial point, which is very difficult

to obtain for this problem owing to the non-linearity.

The PN algorithm is based on that presented in [30,33]. At each outer iteration, active

and inactive sets are identified based on the primal variable u. Then a Newton step is taken

for the inactive variables whereas a projected steepest descent is taken for the active ones.

A line search ensures that the step size taken in the inactive variables is such that they do

not violate the non-negativity constraint. A few parameters have to be modified to tune
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the line search. The method is quite slow, for only a few inactive variables are updated at

each step. Active variables which are already at the boundary of the feasible set, cannot

be updated. Theoretically, once all the active variables are identified, the convergence is

quadratic. However, it takes many iterations to find all the active variables. In all of

our experiments, a quadratic convergence has not been observed within the limit of 300

iterations. More importantly, the Newton iterations diverge for many initial data since the

non-differentiability of the TV norm has not been dealt with properly [37].

A natural way to solve the dual problem (2.5) is by alternating minimization. The

AM algorithm is based on the convexity of the dual problem. The problem is solved by the

alternating solution of two subproblems: the λ subproblem for fixed p and the p subproblem

for a fixed λ. The λ subproblem is given by

min
λ,λ≥0

1

2
‖B1/2(b+ λ)‖2, (2.10)

where

b = KT f + βdivpc,

and pc is the latest value of p from the previous iteration. The p subproblem is given by

min
p,|pi,j |≤1

1

2
‖B1/2(g + βdivp)‖2, (2.11)

where

g = KT f + λc,

and λc is the latest value of λ from the previous iteration. The solution of the λ subproblem

(2.10) uses the PDAS algorithm presented in [2]. The solution of the p subproblem (2.11) is

based on an extension of Chambolle’s steepest descent technique presented in [25], modified

for deblurring problems. The Euler-Lagrange equation corresponding to the problem is

−β [∇(B(βdivp+ g))]i,j + µi,jpi,j = 0, ∀ i, j

where, as before, i, j refer to individual pixels in the image. Note that, as discussed earlier,

α > 0 in case of AM since this is a dual-only method. The above equation is used to derive

the following steepest-descent algorithm to solve the p subproblem:

pn+1
i,j =

pni,j + τβ [∇(B(βdivp+ g))]i,j
1 + τβ| [∇(B(βdivp+ g))]i,j |

, ∀ i, j.
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Here, the step size τ is inversely proportional to the square root of the condition number of

KTK +αI which is very small for most reasonable choice of α (which is set to 0.008 in our

experiments). Thus, a large number of steps is expected. Once the dual problem is solved,

the solution u∗ to the original problem is recovered as

u∗ = B(KT f + βdivp∗ + λ∗),

where p∗ and λ∗ are the optimal solution to the dual problem. Duality arguments can be

used to show that the recovered optimal u∗ satisfies the non-negativity constraint, cf. Eq.

(A.9) and (A.12).



Chapter 3

Numerical Results

3.1 Introduction

In this section, we present extensive numerical results to demonstrate the performance of

the NNCGM algorithm. We consider various conditions: different signal-to-noise ratios

(SNR), different types and sizes of point spread functions (PSF) and different values of

the smoothing parameter ε. We also show the robustness of the NNCGM algorithm with

respect to various parameters, and the performance of the FBIP preconditioner. The two

images that will be used for the comparison purposes are the License Plate and Satellite

images. The original images and typical results of TV deblurring for NNCGM are shown

in Fig. 3.1 and 3.2.

3.2 Numerical Comparison with the PN and AM Algorithms

In the tests below, we vary one condition at a time, leaving the others to their moderately

chosen values. In each test, we run each algorithm for a few different values of β and choose

the optimal β that minimizes the l2 reconstruction error. Unless otherwise mentioned, all

results for NNCGM are with the use of the FBIP preconditioner, which significantly speeds

up the processing. For PN, we tested both the ILU and FBIP preconditioners, and they

caused the processing to be slower. Therefore, the results reported are without the use of

any preconditioner. Our primary interest in Fig. 3.3 to Fig. 3.10 is the outer iterations

18
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Figure 3.1: (a) Original License Plate image (128 × 128); (b) Blurred with Gaussian PSF

7 × 7, SNR 30dB; (c) TV deblurring results with NNCGM, β = 0.4.
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Figure 3.2: Comparison of constrained and unconstrained deblurring. (a) Original Satellite

image (128 × 128); (b) Blurred and noisy data, Gaussian PSF of size 5 × 5, noise of SNR

15dB; (c) Non-negatively constrained deblurring result with β = 0.4, PSNR = 27.61dB;

(d) Unconstrained CGM with β = 0.4 and with negative components set to 0, PSNR =

25.96dB; (e) Contour plot of the result in (c); (f) Contour plot of the result in (d).
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which are largely independent of the inner iterations.

Fig. 3.3 and 3.4 compare the convergence of NNCGM, PN and AM for different SNRs

of −10dB, 20dB, 50dB corresponding to high, medium and low level of noise respectively.

A fixed Gaussian PSF of size 9 × 9 and a fixed ε of 10−2 were used. It is seen that the

NNCGM method reaches a very high accuracy of KKT residual of the order of 10−6 and the

convergence is quadratic eventually. An even higher accuracy can be achieved with only a

few more iterations. The PN and AM methods become very slow in their progression after

about 50 iterations. The total number of outer iterations for the NNCGM method stays

below 70 even for a high noise level of −10dB.

Fig. 3.5 and 3.6 compare the convergence of NNCGM, PN and AM for varying Gaussian

PSF size with a fixed SNR of 20 dB and a fixed ε of 10−2.

Fig. 3.7 and 3.8 compare the convergence of NNCGM, PN and AM for varying ε with

fixed SNR of 20 dB and Gaussian PSF of size 9 × 9.

Fig. 3.9 and 3.10 compare the convergence of NNCGM, PN and AM for Gaussian blur

and out-of-focus blur with a fixed SNR of 20dB, a fixed PSF size of 9 × 9 and a fixed ε of

10−2, for the License Plate and Satellite images respectively.

Tables 3.1 - 3.4 show the CPU timings in seconds and the peak signal-to-noise ratio

(PSNR) in dB for the plots from Fig. 3.3-3.10. The PSNR, defined by

10 log10

(

2552

1
mn‖original − reconstructed‖2

)

,

is a measure of image reconstruction error. Here, m× n are dimensions of the image. The

larger the PSNR, the smaller the error will be. The figures in parentheses after each CPU

timing for NNCGM refers to the total number of outer iterations required for each method.

In all cases, we set the maximum number of iterations to 300, for both the PN and AM

algorithms essentially stagnate after 300 iterations. The first sub-row in each row are License

Plate data and the second sub-row are Satellite data. In each case, bold letters highlight

the lowest CPU timings and the lowest reconstruction error (highest PSNR) among the

three algorithms. All the algorithms were implemented in Matlab 7.2. CPU timings were

measured on a Pentium D 3.2GHz processor with 4GB of RAM.

In most cases, the PN algorithm iterated for the maximum 300 iterations but did not
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Figure 3.3: Convergence profiles of varying SNR for License Plate (a) −10 dB; (b) 20 dB;

(c) 50 dB.
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Figure 3.4: Convergence profiles of varying SNR for Satellite (a) −10 dB; (b) 20 dB; (c) 50

dB.
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Figure 3.5: Convergence profiles of varying PSF for License Plate (a) Gaussian 3 × 3; (b)

Gaussian 9 × 9; (c) Gaussian 15 × 15.
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Figure 3.6: Convergence profiles of varying PSF for Satellite (a) Gaussian 3×3; (b) Gaussian

9 × 9; (c) Gaussian 15 × 15.
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Figure 3.7: Convergence profiles of varying smoothing parameter ε for License Plate (a)

ε = 0.001; (b) ε = 0.01; (c) ε = 0.1.
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Figure 3.8: Convergence profiles of varying smoothing parameter ε for Satellite (a) ε = 0.001;

(b) ε = 0.01; (c) ε = 0.1.
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Figure 3.9: Convergence profiles for different types of blur for License Plate (a) Gaussian;

(b) Out-of-focus.
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Figure 3.10: Convergence profiles for different types of blur for Satellite (a) Gaussian; (b)

Out-of-focus.

reach even a moderate level of accuracy for the stopping criterion (the KKT residual). So,

the CPU timings for the PN algorithm would have been much higher if we iterated until

convergence. Moreover, it is well-known that primal-only methods such as PN have a small

domain of convergence [7, 37]. We would have had to use a large value of ε to enlarge the

domain of convergence to make PN converge. The NNCGM algorithm shows considerable

robustness to the initial guess even for a small value of ε (see Fig. 3.11 below), therefore

allowing for a greater accuracy. It is seen that the NNCGM algorithm outperforms the

other two both in terms of CPU time and PSNR in most of the tested cases. NNCGM is

also the only method that is able to achieve very high levels of accuracy within a reasonable

time, and so we do not need the usual trade-off between time taken and accuracy. The AM

algorithm, while having a larger domain of convergence, is too slow for practical purposes.

3.3 Robustness of NNCGM

In this section, we test the robustness of the NNCGM algorithm with respect to various

parameters. Fig. 3.11 shows the convergence of NNCGM for extremely small values of ε, a

fixed SNR of 20dB and a Gaussian PSF of size 9× 9 for the License Plate image. It is seen

that even for small values of ε, the rate of convergence is eventually quadratic. In contrast,

PN diverges for such small values of ε.

Fig. 3.12 shows the convergence of NNCGM for different values of c, a fixed SNR of
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SNR Image
NNCGM PN AM

CPU PSNR CPU PSNR CPU PSNR

−10
License Plate 449.71 (65) 11.88 369.4 (> 300) 12.32 6630 (> 300) 8.16

Satellite 124.92 (62) 29.64 150.64 (> 300) 23.42 6360 (> 300) 20.94

20
License Plate 192.28 (49) 31.79 497.01 (> 300) 29.96 3720 (> 300) 30.82

Satellite 49.46 (31) 37.50 77.57 (> 300) 36.31 5340 (> 300) 32.22

50
License Plate 103.64 (26) 37.79 309.95 (> 300) 34.29 3570 (> 300) 32.22

Satellite 52.76 (27) 38.47 96.17 (> 300) 36.16 6040 (> 300) 36.09

Table 3.1: CPU time in seconds and PSNR for varying SNRs. The figure in parentheses after the CPU timing is the total number of

outer iterations (max. 300).
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PSF Image
NNCGM PN AM

CPU PSNR CPU PSNR CPU PSNR

3 × 3
License Plate 49.04 (35) 37.29 382.22 (> 300) 31.91 5280 (> 300) 37.8

Satellite 28.37 (42) 45.53 148.15 (> 300) 45.78 6050 (> 300) 45.86

9 × 9
License Plate 205.26 (49) 31.79 483.29 (> 300) 29.91 3710 (> 300) 30.82

Satellite 48.82 (42) 37.50 78.92 (> 300) 36.31 5920 (> 300) 36.06

15 × 15
License Plate 371.74 (49) 28.25 614.15 (> 300) 28.16 4200 (> 300) 28.23

Satellite 107.09 (42) 35.54 84.31 (> 300) 33.04 5210 (> 300) 32.87

Table 3.2: CPU time in seconds and PSNR for different PSFs. The figure in parentheses after the CPU timing is the total number of

outer iterations (max. 300).
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ε Image
NNCGM PN AM

CPU PSNR CPU PSNR CPU PSNR

0.001
License Plate 309.09 (54) 31.79 356.84 (> 300) 29.8 3740 (> 300) 30.82

Satellite 59.70 (42) 37.5 128.87 (> 300) 34.79 5876 (> 300) 36.06

0.01
License Plate 206.17 (49) 31.79 481.07 (> 300) 29.96 3749 (> 300) 30.82

Satellite 48.81 (42) 37.50 77.25 (> 300) 36.31 5280 (> 300) 36.06

0.1
License Plate 138.06 (39) 31.8 352.42 (> 300) 29.8 3740 (> 300) 30.82

Satellite 41.32 (42) 37.51 30.85 (> 300) 35.31 5350 (> 300) 36.06

Table 3.3: CPU time in seconds and PSNR for different ε’s. The figure in parentheses after the CPU timing is the total number of outer

iterations (max. 300).
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Blur Type Image
NNCGM PN AM

CPU PSNR CPU PSNR CPU PSNR

Gaussian
License Plate 210.31 (49) 31.79 478.35 (> 300) 29.96 3650 (> 300) 30.82

Satellite 48 (42) 37.50 75.67 (> 300) 36.31 3670 (> 300) 31.02

Out-of-focus
License Plate 162.70 (42) 31.79 478.35(> 300) 29.96 6096(> 300) 36.06

Satellite 41 (42) 37.89 85.98 (> 300) 38.62 6470 (> 300) 37.61

Table 3.4: CPU time in seconds and PSNR for different blur types. All PSFs have size 9 × 9. The figure in parentheses after the CPU

timing is the total number of outer iterations (max. 300).
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20dB and a Gaussian PSF of size 9× 9 for the License Plate image. The convergence plots

are almost identical. This is in keeping with the theoretical results obtained in [2] for the

PDAS algorithm.

NNCGM can be made significantly faster with the use of standard preconditioners. We

tested the NNCGM method with an ILU preconditioner and a FBIP preconditioner. The

best performance was seen with the FBIP preconditioner. Fig. 3.13 shows the number of

inner CG iterations for each outer iteration for the FBIP preconditioner with varying PSF

size, a fixed SNR of 20dB and a Gaussian PSF of size 9×9. These results are for the License

Plate image. It is seen that the number of inner CG iterations shows a slight tendency to

increase. But the number of CG iterations still remains low. Moreover, a very high accuracy

is obtained so that there is no need to carry out further outer iterations. In this sense the

slight increase in the number of CG iterations does not pose any serious problem.

There are three possible reasons for the increase in the number of inner CG iterations

and the overall time taken to process as the PSF size increases. Firstly, as the system

approaches convergence, the linear system Eq. (2.9) is increasingly ill-conditioned and thus

the CG requires more iterations to solve the problem. Secondly, as the PSF size increases,

the matrix K has more bands. This means that the construction of the preconditioner

takes more time. Thirdly, since we keep the bandwidth of the preconditioner fixed to 2 in

most of the tests, the approximation error of the preconditioner becomes larger as the PSF

size increases. This can be remedied by increasing the bandwidth of the preconditioner.

However, it is not our purpose here to fine-tune the preconditioner performance.
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Figure 3.11: Convergence plots for NNCGM for very small values of ε for License Plate.
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Figure 3.13: Inner CG iterations for FBIP preconditioner and PSF (a) Gaussian 3× 3; (b)

Gaussian 9 × 9; (c) Gaussian 15 × 15.



Chapter 4

Conclusion

Our experiments indicate that the NNCGM method is very robust in performance over a

wide range of parameters. The rate of convergence is locally quadratic in all cases. The

method is able to solve the non-negatively constrained TV deblurring problem to a high

level of accuracy. Both Gaussian and out-of-focus blurs can be solved equally fast. The

reduced system Eq. (2.9) has a simple structure and the standard FBIP preconditioner

helps in significantly speeding up the processing time. We have also found in our tests that

the method is highly robust to the initial guess of the image. In all the tests above, the

initial guess was simply taken to be the observed image with negative components set to

zero. Using the observed image itself gave very similar convergence results. Maintaining

feasibility of the variables can be effectively done in a straightforward way whereas we found

it difficult to do so with standard interior-point methods. All parameters can be left at their

default values, except in the case of extremely small values of the regularization parameter

ε (values below 10−6). In this case, the bandwidth of the FBIP preconditioner needs to be

increased from the default value of 2 to overcome the highly ill-conditioning of the linear

system Eq.(2.9). But we found that setting ε = 10−2 gives a good balance between quality

and speed.

A topic for further research may be the inclusion of upper bounds on the original prob-

lem, since real-world images have gray levels that fall between the values of 0 and 255, for

8-bit images. Intuitively, it could be expected that this will further improve the accuracy

of the deblurring reconstruction.
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Appendix A

Derivation of the Primal-Dual

Program and the NNCGM

Algorithm

A.1 The Primal-Dual Program

The general primal problem under consideration (with the l2 regularization parameter α)

is

min
u,u≥0

1

2
‖Ku− f‖2 +

α

2
‖u‖2 + β‖u‖TV ,

which can be written as,

min
u

{

1

2
‖Ku− f‖2 +

α

2
‖u‖2 + β‖u‖TV + I(u ≥ 0)

}

, (A.1)

where I(u ≥ 0) = 0 if u ≥ 0 for all components of u, I(u ≥ 0) = ∞ if any of the components

of u are < 0. Using the Fenchel transform of the TV norm in Eq. (1.2), we have

‖u‖TV = sup
p,|pi,j |≤1

〈u,−divp〉 (A.2)

where p is the dual variable and div is the discrete divergence operator defined in Eq. (2.2)

and Eq. (2.3) respectively. Substituting Eq. (A.2) into Eq. (A.1), we have

min
u

{

1

2
‖Ku− f‖2 +

α

2
‖u‖2 + β sup

p,|pi,j |≤1
〈u,−divp〉 + I(u ≥ 0)

}

,
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or

min
u

max
p

{

1

2
‖Ku− f‖2 +

α

2
‖u‖2 + β〈u,−divp〉 + I(u ≥ 0) − I(|pi,j | ≤ 1)

}

,

where it is understood that I(|pi,j | ≤ 1) = ∞ if the Euclidean norm of any of the components

of p is greater than 1. By the convexity of the objective, we have

max
p

min
u

{

1

2
‖Ku− f‖2 +

α

2
‖u‖2 + β〈u,−divp〉 + I(u ≥ 0) − I(|pi,j | ≤ 1)

}

. (A.3)

Consider the inner minimization for a fixed p. The Lagrangian for this problem is given by

L(u, λ) :=
1

2
‖Ku− f‖2 +

α

2
‖u‖2 + β〈u,−divp〉 − 〈u, λ〉, (A.4)

where λ is the Lagrange multiplier for u ≥ 0. Then,

∇uL = (KTK + αI)u−KT f − βdivp− λ.

Solving ∇uL = 0 gives

u = B(KT f + βdivp+ λ), (A.5)

where B := (KTK + αI)−1. Next, we plug-in Eq. (A.5) into Eq. (A.4) to obtain

L(λ) = −
1

2
‖B1/2(KT f + βdivp+ λ)‖2 +

1

2
‖f‖2. (A.6)

Now, we plug-in (A.6) into (A.3) and change minu to maxλ. After simplification, we get

max
p

max
λ

{

−
1

2
‖B1/2(KT f + βdivp+ λ)‖2 +

1

2
‖f‖2 − I(λ ≥ 0) − I(|pi,j | ≤ 1)

}

.

Equivalently, we arrive at the following dual problem:

min
p

min
λ

{

1

2
‖B1/2(KT f + βdivp+ λ)‖2 −

1

2
‖f‖2 + I(λ ≥ 0) + I(|pi,j | ≤ 1)

}

. (A.7)

A.2 Optimality Conditions

The KKT for (A.7) is as follows

−β∇B(βdivp+KT f + λ) + µ� p = 0, (A.8)

−B(βdivp+KT f + λ) + u = 0, (A.9)

µ� (|p|2 − 1) = 0, (A.10)

u� λ = 0, (A.11)

λ, u ≥ 0, (A.12)

|pi,j | ≤ 1, ∀ i, j. (A.13)



43

Here, we identify the Lagrange multipliers for λ ≥ 0 with u. This is because of Eq. (A.9)

above, which is the same as Eq. (A.5). The equation u�λ = 0 is understood as component-

wise multiplication. The equation µ � (|p|2 − 1) = 0 is understood as µi,j(|pi,j |
2 − 1) = 0

for all i, j. The expression µ� p is understood as µi,jpi,j for all i, j. Instead of solving the

above KKT system directly, we follow a technique developed in [1]. We solve the following

equivalent system of equations:

p|∇u|ε −∇u = 0, (A.14)

−βdivp−KT f − λ+Au = 0, (A.15)

λ− max{0, λ− cu} = 0. (A.16)

Here, A := KTK + αI = B−1 and c is an arbitrary positive constant. For notational

convenience, we denote the left hand side of Eq. (A.14)-(A.16) by F1(p, u, λ), F2(p, u, λ)

and F3(p, u, λ) respectively. To see the equivalency of the two systems, we note that:

1. Eq. (A.9) implies that u = B(βdivp+KT f+λ). Therefore, Eq. (A.8) can be reduced

to µ � p = β∇u. Taking the norm on both sides, along with the complementarity

conditions Eq. (A.10), give us µ = β|∇u|. Hence, we have p|∇u| = ∇u which is the

same as F1 = 0 (cf. Eq. (A.14)) when ε = 0.

2. The equation F2 = 0 (cf. Eq. (A.15)) is simply the Eq. (A.9) restated.

3. The equation F3 = 0 (cf. Eq. (A.16)) is a standard technique to express Eq. (A.11)

and Eq. (A.12) as a single equality constraint.

The backward construction of Eq. (A.8)-(A.12) from Eq. (A.14)-(A.16) can also be easily

done. In addition, it can be seen that Eq. (A.13) is implied by F1 = 0. Therefore, the

two systems are equivalent (when ε = 0). Notice that an ε-regularization is added to the

left-hand side of F1 = 0 owing to the possibility that ∇u = 0.

A.3 The NNCGM Algorithm

In Eq. (A.14), an ε-regularization has been added to overcome the non-differentiability of

the term |∇u|, in F1(p, u, λ). The function F1 is non-differentiable when |∇u| = 0. The

equation (A.14) is required in the first place to maintain the nonlinear constraints |pi,j | ≤ 1.
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The function F3(p, u, λ) (Eq. (A.16)) is similarly non-differentiable. This function is

required to maintain the non-negativity constraints on u (as well as to satisfy the KKT

complementarity conditions). One approach to solving this problem could be to smooth

this function by using a smoothing approximation as for F1(p, u, λ). This would then enable

applying a smooth Newton’s step for this method.

Instead, we propose to use a semi-smooth Newton’s method based on slant differentiabil-

ity of the max-function. This allows us to overcome the non-differentiability of F3(p, u, λ).

Furthermore, local convergence results are also applicable. It may be possible to use a

semi-smooth Newton’s approach to handling the non-linear equation F1(p, u, λ) = 0 as well,

but we have not pursued this here. This may be a topic for further research.

The concept of slant differentiability as introduced in [2] allows the derivation of a

semi-smooth Newton’s method based on using a slanting function in place of the Jacboian

(which does not exist for the system Eq. (A.14) - (A.16). The slanting function is defined

as follows in [2]: Let X and Z be Banach spaces. The mapping F : D ⊂ X → Z is

called slantly differentiable in the open subset U ⊂ D if there exists a family of mappings

G : U → L(X,Z) such that

lim
h→0

‖F (x+ h) − F (x) −G(x+ h)h‖

‖h‖
= 0.

If a bounded slanting function G exists for a function F , Theorem 1.1 in [2] proves that

the following Newton’s iteration is locally quadratically convergent:

xk+1 = xk −G(xk)−1F (xk).

However, no global convergence results are available to us for this problem, though

Theorem 3.3 of [42] could provide some leads to this problem. This is a question for further

research. The numerical results shown in Section 3 confirm the local quadratic convergence.

Our numerical experience also shows that the algorithm is very robust to initialization, and

so there is some numerical evidence of global convergence.

Furthermore, it can be shown that the following matrix function given by a diagonal

matrix Gm(v) with diagonal elements
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Gm(v)ii =







1 if vi > 0

0 if vi ≤ 0

serves as a (bounded) slanting function for the max-function. Together, the above results

allow us to specify a semi-smooth Newton’s method for the system (A.14) - (A.16).

Furthermore, it is shown in [2] that the semi-smooth Newton’s method derived is equiv-

alent to a primal-dual active set strategy. This is seen by setting the active and inactive sets

to be those components of the max-function that are less than or equal to, or greater than

0, respectively. The corresponding Jacobian entries are taken from the above definition

of Gm. The other two functions F1(p, u, λ) and F2(p, u, λ), are differentiable and so their

Jacobians are defined. The process of deriving the PDAS method is shown below.

The semi-smooth Newton’s update for the equations (A.14)-(A.16) is given by the fol-

lowing system:













|∇u|ε −
(

I − p(∇u)T

|∇u|ε

)

∇ 0

−βdiv A −I

0 ∂F3

∂u
∂F3

∂λ

























δp

δu

δλ













= −













F1(p, u, λ)

F2(p, u, λ)

F3(p, u, λ)













. (A.17)

Here, |∇u|ε denotes a diagonal matrix such that (|∇u|εδp)i,j = |(∇u)i,j |ε(δp)i,j and p(∇u)T

|∇u|ε
∇

denotes a matrix such that (p(∇u)
T

|∇u|ε
∇δu)i,j = 1

|(∇u)i,j |ε
pi,j(∇u)

T
i,j(∇δu)i,j . The function F3

is strongly semi-smooth and the derivatives ∂F3

∂u and ∂F3

∂λ are defined in the sense of slant

differentiability which is a generalized derivative. Motivated by the PDAS algorithm in [2]

and the relationship of the semi-smooth Newton’s method to the PDAS method given there,

we let

Ik := {i : λki − cuki ≤ 0},

and

Ak := {i : λki − cuki > 0}.

These define the (predicted) complementary inactive and active sets respectively after the

k-th Newton step. Let DI and DA be the down-sampling matrix with relation to the

inactive set I and active set A respectively. To extract the components of u in I and A,

we compute uI = DIu and uA = DAu respectively. The components λI and λA can be
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obtained similarly. Here, all the superscripts k are dropped for convenience. Let

AI := DIAD
T
I ,

AA := DAAD
T
A,

AIA := DIAD
T
A,

AAI := DAAD
T
I .

Using the active and inactive sets, the semi-smooth Newton step is given by

























|∇u|ε −
(

I − p(∇u)T

|∇u|ε

)

∇DT
I −

(

I − p(∇u)T

|∇u|ε

)

∇DT
A 0 0

−βDIdiv AI AIA −I 0

−βDAdiv AAI AA 0 −I

0 0 0 I 0

0 0 cI 0 0

























×

























δp

δuI

δuA

δλI

δλA

























= −

























F1(p, u, λ)

DIF2(p, u, λ)

DAF2(p, u, λ)

DIF3(p, u, λ)

DAF3(p, u, λ)

























.

Here, δuI = DIδu, etc. The fourth equation above reads

δλI = −DI(λ− 0) = −λI ,

which implies

λk+1
I = λkI + δλI = 0.

The fifth equation of the system reads

cδuA = −DA(λk − λk + cuk) = −cukA,

so that

uk+1
A = ukA + δuA = 0.

This implies that elements in Ak = {i : λki − cuki > 0} are predicted as active variables in

the (k + 1)-st iteration. By setting δuA = −ukA and δλI = −λkI , the Newton’s update can
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be reduced to












|∇u|ε −
(

I − p(∇u)T

|∇u|ε

)

∇DT
I 0

−βDIdiv AI 0

−βDAdiv AAI −I

























δp

δuI

δλA













= −













F1(p, u, λ)

DIF2(p, u, λ)

DAF2(p, u, λ)













+













−
(

I − p(∇u)T

|∇u|ε

)

∇DT
AuA

AIAuA − λI

AAuA













.

It is obvious that δλA can be expressed in terms of δp and δuI :

δλA = −βDAdivδp+AAIδuI +DAF2(p, u, λ) −AAuA. (A.18)

Therefore, the Newton’s update can be further simplified to:






|∇u|ε −
(

I − p(∇u)T

|∇u|ε

)

∇DT
I

−βDIdiv AI











δp

δuI





= −





F1(p, u, λ)

DIF2(p, u, λ)



+







−
(

I − p(∇u)T

|∇u|ε

)

∇DT
AuA

AIAuA − λI






.

Note that the (1, 1)-block |∇u|ε is a diagonal matrix. Hence, we can express δp in terms of

δuI :

δp =
1

|∇u|ε

[(

I −
p(∇u)T

|∇u|ε

)

∇(DT
I δuI −DT

AuA) − F1(p, u, λ)

]

. (A.19)

Eliminating δp from the Newton’s update, we get

[

−βDIdiv
1

|∇u|ε

(

I −
p(∇u)T

|∇u|ε

)

∇DT
I +AI

]

δuI = g(p, u, λ), (A.20)

where

g(p, u, λ) = −DIF2(p, u, λ) +AIAuA − λI

−βDIdiv
1

|∇u|ε

[(

I −
p(∇u)T

|∇u|ε

)

∇DT
AuA + F1(p, u, λ)

]

.

The linear system (A.20) is non-symmetric and so PCG cannot be applied. Chan et al. [1]

proposed in their paper to symmetrize the matrix so that PCG could be applied. Following

this suggestion, we symmetrize the system as:

DI

[

−βdiv
1

|∇u|ε

(

I −
p(∇u)T + (∇u)pT

2|∇u|ε

)

∇ +A

]

DT
I δuI = g(p, u, λ). (A.21)



48

It can be shown that the system Eq. (A.21) is symmetric positive definite when |pi,j | ≤ 1 for

all i, j. We remark that using the relationship between the PDAS and semi-smooth Newton’s

method allows us to simplify the original linear system Eq. (A.17) into the much smaller

linear system Eq. (A.21). The simpler structure of the reduced system also facilitates the

construction of effective preconditioners.



Appendix B

Default Parameters for Given Data

For the 3 algorithms whose performance we have compared, i.e. NNCGM, PN and AM, we

used the parameters shown in Tables B.1, B.2 and B.3. We used the same values for all

results shown in this work, except for the results for extremely small values of ε, Fig. 3.11.

In this case, the bandwidth of the FBIP preconditioner was increased from the default value

of 2 to 3 and 4, respectively to overcome the highly ill-conditioning of the linear system

(A.21).
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Table B.1: Default Parameter Values (NNCGM)

Parameter Value

ρ 0.99

PCG tolerance 10−1

FBIP Bandwidth (symmetric) 2

c 104

Outer loop tol. (KKT) 10−6

ε (reg.) 10−2

Max. ] Outer Iterations 300

Max. ] Line Search (p) 40

Max. ] CG Iterations Per Inner Loop 200

α 0

Initial guess for u u0 = max(f, 0)

Initial guess for p pi,j = 0 ∀ i, j

Initial guess for λ λi,j = 0 ∀ i, j

Table B.2: Default Parameter Values (AM)

Parameter Value

PCG tolerance 10−1

Outer loop tol. (KKT) 10−6

Max. ] Outer Iterations 300

Max. ] CG Iterations Per Inner Loop 200

α 0.008

Initial guess for u u0 = max(f, 0)

Initial guess for p pi,j = 0 ∀ i, j

Initial guess for λ λi,j = 0 ∀ i, j
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Table B.3: Default Parameter Values (PN)

Parameter Value

PCG tolerance 10−1

Outer loop tol. (KKT) 10−6

ε (reg.) 10−2

Max. ] Outer Iterations 300

Max. ] Line Search 30

Max. ] CG Iterations Per Inner Loop 200

α 0

Newton step tolerance 10−6

Line search reduction fraction 0.25

Initial guess for u u0 = max(f, 0)


