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Abstract

The Generic Viewpoint Assumption (GVA) states that the position of the viewer
or the light in a scene is not special. Thus, any estimated parameters from an
observation should be stable under small perturbations such as object, viewpoint
or light positions. The GVA has been analyzed and quantified in previous works,
but has not been put to practical use in actual vision tasks. In this paper, we show
how to utilize the GVA to estimate shape and illumination from a single shading
image, without the use of other priors. We propose a novel linearized Spherical
Harmonics (SH) shading model which enables us to obtain a computationally ef-
ficient form of the GVA term. Together with a data term, we build a model whose
unknowns are shape and SH illumination. The model parameters are estimated
using the Alternating Direction Method of Multipliers embedded in a multi-scale
estimation framework. In this prior-free framework, we obtain competitive shape
and illumination estimation results under a variety of models and lighting condi-
tions, requiring fewer assumptions than competing methods.

1 Introduction

The generic viewpoint assumption (GVA) [5, 9, 21, 22] postulates that what we see in the world
is not seen from a special viewpoint, or lighting condition. Figure 1 demonstrates this idea with
the famous Necker cube example1. A three dimensional cube may be observed with two vertices
or edges perfectly aligned, giving rise to a two dimensional interpretation. Another possibility is
a view that exposes only one of the faces of the cube, giving rise to a square. However, these 2D
views are unstable to slight perturbations in viewing position. Other examples in [9] and [22] show
situations where views are unstable to lighting rotations.

While there has been interest in the GVA in the psychophysics community [22, 12], to the best of
our knowledge, this principle seems to have been largely ignored in the computer vision community.
One notable exception is the paper by Freeman [9] which gives a detailed analytical account on how
to incorporate the GVA in a Bayesian framework. In that paper, it is shown that using the GVA
modifies the probability space of different explanations to a scene, preferring perceptually valid and
stable solutions to contrived and unstable ones, even though all of these fully explain the observed
image. No algorithm incorporating the GVA, beyond exhaustive search, was proposed.

∗Equal contribution
1Taken from http://www.cogsci.uci.edu/˜ddhoff/three-cubes.gif
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Figure 1: Illustration of the GVA principle using the Necker cube example. The cube in the middle
can be viewed in multiple ways. However, the views on the left and right require a very specific
viewing angle. Slight rotations of the viewer around the exact viewing positions would dramatically
change the observed image. Thus, these views are unstable to perturbations. The middle view, on
the contrary, is stable to viewer rotations.

Shape from shading is a basic low-level vision task. Given an input shading image - an image of
a constant albedo object depicting only changes in illumination - we wish to infer the shape of the
objects in the image. In other words, we wish to recover the relative depth Zi at each pixel i in
the image. Given values of Z, local surface orientations are given by the gradients ∇xZ and ∇yZ
along the coordinate axes. A key component in estimating the shape is the illumination L. The
parameters of L may be given with the image, or may need to be estimated from the image along
with the shape. The latter is a much harder problem due to the ambiguous nature of the problem, as
many different surface orientations and light combinations may explain the same image. While the
notion of a shading image may seem unnatural, extracting them from natural images has been an
active field of research. There are effective ways of decomposing images into shading and albedo
images (so called “intrinsic images” [20, 10, 1, 29]), and the output of those may be used as input to
shape from shading algorithms.

In this paper we show how to effectively utilize the GVA for shape and illumination estimation from
a single shading image. The only terms in our optimization are the data term which explains the
observation and the GVA term. We propose a novel shading model which is a linearization of the
spherical harmonics (SH) shading model [25]. The SH model has been gaining popularity in the
vision and graphics communities in recent years [26, 17]) as it is more expressive than the pop-
ular single source Lambertian model. Linearizing this model allows us, as we show below, to get
simple expressions for our image and GVA terms, enabling us to use them effectively in an optimiza-
tion framework. Given a shading image with an unknown light source, our optimization procedure
solves for the depth and illumination in the scene. We optimize using Alternating Direction Method
of Multipliers (ADMM) [4, 6]. We show that this method is competitive with current shape and
illumination from shading algorithms, without the use of other priors over illumination or geometry.

2 Related Work

Classical works on shape from shading include [13, 14, 15, 8, 23] and newer works include [3, 2,
19, 30]. It is out of scope of this paper to give a full survey of this well studied field, and we refer the
reader to [31] and [28] for good reviews. A large part of the research has been focused on estimating
the shape under known illumination conditions. While still a hard problem, it is more constrained
than estimating both the illumination and the shape.

In impressive recent work, Barron and Malik [3] propose a method for estimating not just the illu-
mination and shape, but also the albedo of a given masked object from a single image. By using
a number of novel (and carefully balanced) priors over shape (such as smoothness and contour in-
formation), albedo and illumination, it is shown that reasonable estimates of shape and illumination
may be extracted. These priors and the data term are combined in a novel multi-scale framework
which weights coarser scale (lower frequency) estimates of shape more than finer scale estimates.
Furthermore, Barron and Malik use a spherical harmonics lighting model to provide for richer re-
covery of real world scenes and diffuse outdoor lighting conditions. Another contribution of their
work has been the observation that joint inference of multiple parameters may prove to be more
robust (although this is hard to prove rigorously). The expansion to the original MIT dataset [11]
provided in [3] is also a useful contribution.
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Another recent notable example is that of Xiong et al. [30]. In this thorough work, the distribution
of possible shape/illumination combinations in a small image patch is derived, assuming a quadratic
depth model. It is shown that local patches may be quite informative, and that are only a few possible
explanations of light/shape pairs for each patch. A framework for estimating full model geometry
with known lighting conditions is also proposed.

3 Using the Generic View Assumption for Shape from Shading

In [9], Freeman gave an analytical framework to use the GVA. However, the computational exam-
ples in the paper were restricted to linear shape from shading models. No inference algorithm was
presented; instead the emphasis was on analyzing how the GVA term modifies the posterior dis-
tribution of candidate shape and illumination estimates. The key idea in [9] is to marginalize the
posterior distribution over a set of “nuisance” parameters - these correspond to object or illumi-
nation perturbations. This integration step corresponds to finding a solution that is stable to these
perturbations.

3.1 A Short Introduction to the GVA

Here we give a short summary of the derivations in [9], which we use in our model. We start
with a generative model f for images, which depends on scene parameters Q and a set of generic
parameters w. The generative model we use is explained in Section 4. w are the parameters which
will eventually be marginalized. In our shape and illumination from shading case, f corresponds to
our shading model in Eq. 14 (defined below). Q includes both surface depth at each point Z and the
light coefficients vector L. Finally, the generic variable w corresponds to different object rotation
angles around different axes of rotations (though there could be other generic variables, we only use
this one). Assuming measurement noise η the result of the generative process would be:

I = f(Q,w) + η (1)

Now, given an image I we wish to infer scene parameters Q by marginalizing out the generic vari-
ables w. Using Bayes’ theorem, this results in the following probability function:

P (Q|I) =
P (Q)

P (I)

∫
w

P (w)P (I|Q,w)dw (2)

Assuming a low Gaussian noise model for η, the above integral can be approximated with a Laplace
approximation, which involves expanding f using a Taylor expansion around w0. We get the fol-
lowing expression, aptly named in [9] as the ”scene probability equation”:

P (Q|I) = C︸︷︷︸
constant

exp

(
−‖I− f(Q,w0)‖2

2σ2

)
︸ ︷︷ ︸

fidelity

P (Q)P (w0)︸ ︷︷ ︸
prior

1√
detA︸ ︷︷ ︸

genericity

(3)

where A is a matrix whose i, j-th entry is:

Ai,j =
∂f(Q,w)

∂wi

T
∂f(Q,w)

∂wj
(4)

and the derivatives are estimated at w0. A is often called the Fisher information matrix.

Eq. 3 has three terms: the fidelity term (sometimes called the likelihood term, data term or image
term) tells us how close we are to the observed image. The prior tells us how likely are our current
parameter estimates. The last term, genericity, tells us how much our observed image would change
under perturbations of the different generic variables. This term is the one which penalizes for
unstable results w.r.t to the generic variables. From the form of A, it is clear why the genericity term
helps; the determinant of A is large when the rendered image f changes rapidly with respect to w.
This makes the genericity term small and the corresponding hypothesis Q less probable.
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3.2 Using the GVA for Shape and Illumination Estimation

We now show how to derive the GVA term for general object rotations by using the result in [9] and
applying it to our linearized shading model. Due to lack of space, we provide the main results here;
please refer to the supplementary material for full details. Given an axis of rotation parametrized by
angles θ and γ, the derivative of f w.r.t to a rotation φ about the axis is:

∂f
∂φ = aRx + bRy + cRz (5)

a = cos(θ) sin(γ), b = sin(θ) sin(γ), c = cos(γ) (6)

where Rx,Ry and Rz are three derivative images for rotations around the canonical axes for which
the i-th pixel is:

Rx
i = Ixi Zi + αiβik

x
i + (1 + β2

i )kyi (7)

Ry
i = −Iyi Zi − αiβik

y
i − (1 + α2

i )k
x
i (8)

Rz
i = Ixi Yi − I

y
i Xi + αik

y
i − βik

x
i (9)

We use these images to derive the GVA term for rotations around different axes, resulting in:

GVA(Z,L) =
∑
θ∈Θ

∑
γ∈Γ

1√
2πσ2‖ ∂f∂φ‖2

(10)

where Θ and Γ are discrete sets of angles in [0, π) and [0, 2π) respectively. The terms in Eqs. 5–10
are quite daunting, especially considering that α = ∇xZ and β = ∇yZ are functions of the depth
Z. In the next section we present our linearized shading model which makes these expressions more
manageable.

4 Linearized Spherical Harmonics Shading Model

The Spherical Harmonics (SH) lighting2 model allows for a rich yet concise description of a light-
ing environment [25]. By keeping just a few of the leading SH coefficients when describing the
illumination, it allows an accurate description for low frequency changes of lighting as a function
of direction, without needing to explicitly model the lighting environment in whole. This model
has been used successfully in the graphics and the vision communities. The popular setting for SH
lighting is to keep the first three orders of the SH functions, resulting in nine coefficients which we
will denote by the vector L. Let Z be a depth map, with the depth at pixel i given by Zi. The surface
slopes at pixel i are defined as αi = (∇xZ)i and βi = (∇yZ)i respectively. Given L and Z, the log
shading at pixel i for a diffuse, Lambertian surface under the SH model is given by:

logSi = nTi Mni (11)

where ni:

ni =
[

αi√
1+α2

i +β2
i

βi√
1+α2

i +β2
i

1√
1+α2

i +β2
i

1
]T

(12)

and:

M =

c1L9 c1L5 c1L8 c2L4

c1L5 −c1L9 c1L6 c2L2

c1L8 c1L6 c3L7 c2L3

c2L4 c2L2 c2L3 c4L1 − c5L7

 (13)

c1 = 0.429043, c2 = 0.511664, c3 = 0.743125, c4 = 0.886227, c5 = 0.247708

The formation model in Eq. 11 is non-linear and non-convex in the surface slopes α and β. In
practice, this leads to optimization difficulties such as local minima, which have been noted by
Barron and Malik in [3]. In order to overcome this, we linearize Eq. 11 around the local surface
slope estimate α0

i and β0
i , such that:

logSi ≈ kc(α0
i , β

0
i ,L) + kx(α0

i , β
0
i ,L)αi + ky(α0

i , β
0
i ,L)βi (14)

2We will use the terms lighting and shading interchangeably

4



where the local surface slopes are estimated in a local patch around each pixel in our current esti-
mated surface. The derivation of the linearization is given in the supplementary material. For the
sake of brevity, we will omit the dependence on the α0

i , β
0
i and L terms, and denote the coefficients

at each location as kci ,k
x
i and kyi respectively for the remainder of the paper.

A natural question is the accuracy of the linearized model Eq. 14. The linearization is accurate
in most situations where the depth Z changes gradually, such that the change in slope is linear or
small in magnitude. In [30], locally quadratic shapes are assumed; this leads to linear changes in
slopes, and in such situations, the linearization is highly accurate. We tested the accuracy of the
linearization by computing the difference between the estimates in Eq. 14 and Eq. 11, over ground
truth shape and illumination estimates. We found it to be highly accurate for the models in our
experiments. The linearization in Eq. 14 leads to a quadratic formation model for the image term
(described in Section 5.2.1), leading to more efficient updates for α and β. Furthermore, this allows
us to effectively incorporate the GVA even with the spherical harmonics framework.

5 Optimization using the Alternating Direction Method of Multipliers

5.1 The Cost Function

Following Eq. 3, we can now derive the cost function we will optimize w.r.t the scene parameters
Z and L. To derive a MAP estimate, we take the negative log of Eq. 3 and use constant priors over
both the scene parameters and the generic variables; thus we have a prior-free cost function. This
results in the following cost:

g(Z,L) = λimg‖I− logS(Z,L)‖2 − λGVA log GVA(Z,L) (15)
where f(Z,L) = logS(Z,L) is our linearized shading model Eq. 14 and the GVA term is defined in
Eq. 10. λimg and λGVA are hyper-parameters which we set to 2 and 1 respectively for all experiments.
Because of the dependence of α and β on Z directly optimizing for this cost function is hard, as it
results in a large, non-linear differential system for Z. In order to make this more tractable, we
introduce α̃ and β̃, the surface spatial derivatives, as auxiliary variables, and solve for the following
cost function which constrains the resulting surface to be integrable:

g̃(Z, α̃, β̃,L|I) = λimg‖I− logS(α̃, β̃,L)‖2 − λGVA log GVA(Z, α̃, β̃,L) (16)

s.t α̃ = ∇xZ, β̃ = ∇yZ, ∇y∇xZ = ∇x∇yZ

ADMM allows us to subdivide the cost into relatively simple subproblems, solve each one indepen-
dently and then aggregate the results. We briefly review the message passing variant of ADMM [7]
in the supplementary material.

5.2 Subproblems

5.2.1 Image Term

This subproblem ties our solution to the input log shading image. The participating variables are the
slopes α̃ and β̃ and illumination L. We minimize the following cost:

arg min
α̃,β̃,L

λimg

∑
i

(
Ii − kci − kxi α̃i − k

y
i β̃i

)2

+
ρ

2
‖α̃− nα̃‖2 +

ρ

2
‖β̃ − nβ̃‖

2 +
ρ

2
‖L− nL‖2 (17)

where nα̃, nβ̃ and nL are the incoming messages for the corresponding variables as described above.
We solve this subproblem iteratively: for α̃ and β̃ we keep L constant (and as a result the k-s are
constant). A closed form solution exists since this is just a quadratic due to our linearized model. In
order to solve for L we do a few (5 to 10) steps of L-BFGS [27].

5.2.2 GVA Term

The participating variables here are the depth values Z, the slopes α̃ and β̃ and the light L. We look
for the parameters which minimize:

arg min
Z,α̃,β̃,L

− λGVA

2
log GVA(Z, α̃, β̃,L) +

ρ

2
‖α̃− nα̃‖2 +

ρ

2
‖β̃ − nβ̃‖

2 +
ρ

2
‖L− nL‖2 (18)
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Here, though the expression for the GVA (Eq. 10) term is greatly simplified due to the shading model
linearization, we have to resort to numerical optimization. We solve for the parameters using a few
steps of L-BFGS [27].

5.2.3 Depth Integrability Constraint

Shading only depends on local slope (regardless of the choice of shading model, as long as there
are no shadows in the scene), hence the image term only gives us information about surface slopes.
Using this information we need to find an integrable surface Z [8]. Finding integrable surfaces from
local slope measurements has been a long standing research question and there are several ways
of doing this [8, 14, 18]. By finding such as a surface we will satisfy both constraints in Eq. 16
automatically. Enforcing integrability through message passing was performed in [24], where it was
shown to be helpful in recovering smooth surfaces. In that work, belief propagation based message-
passing was used. The cost for this subproblem is:

arg min
Z,α̃,β̃

ρ

2
‖Z− nZ‖2 +

ρ

2
‖α̃− nα̃‖2 +

ρ

2
‖β̃ − nβ̃‖

2 (19)

s.t α̃ = ∇xZ, β̃ = ∇yZ, ∇y∇xZ = ∇x∇yZ

We solve for the surface Z given the messages for the slopes nα̃ and nβ̃ by solving a least squares
system to get the integrable surface. Then, the solution for α̃ and β̃ is just the spatial derivative of
the resulting surface, satisfying all the constraints and minimizing the cost simultaneously.

5.3 Relinearization

After each ADMM iteration, we perform re-linearization of the kc,kx and ky coefficients. We take
the current estimates for Z and L and use them as input to our linearization procedure (see the
supplementary material for details). These coefficients are then used for the next ADMM iteration.
and this process is repeated.

6 Experiments and Results

N−MAE L−MSE
0

0.2

0.4

0.6

0.8
SIFS
Ours −GVA
Ours −No GVA

(a) Models from [30] using
“lab” lights

N−MAE L−MSE
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7
SIFS
Ours −GVA
Ours −No GVA

(b) MIT models using
“natural” lights

N−MAE L−MSE
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7
SIFS
Ours −GVA
Ours −No GVA

(c) Average result over all
models and lights

Figure 2: Summary of results: Our performance is quite similar to that of SIFS [3] although we do
not use contour normals, nor any shape or illumination priors unlike [3]. We outperform SIFS on
models from [30], while SIFS performs well on the MIT models. On average, we are comparable to
SIFS in N-MAE and sightly better at light estimation.

We use the GVA algorithm to estimate shape and illumination from synthetic, grayscale shading
images, rendered using 18 different models from the MIT/Berkeley intrinsic images dataset [3] and
7 models from the Harvard dataset in [30]. Each of these models is rendered using several different
light sources: the MIT models are lit with a ”natural” light dataset which comes with each model,
and we use 2 lights from the ”lab” dataset in order to light the models from [30], resulting in 32
different images. We use the provided mask just in the image term, where we solve only for pixels
within the mask. We do not use any other contour information as in [3]. Models were downscaled
to a quarter of their original size. Running times for our algorithm are roughly 7 minutes per image
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Figure 3: Example of our results - note that the vertical scale of the mesh plots is different between
the plots and have been rescaled for display (specifically, the SIFS result are 4 times deeper). Our
method preserves features such as the legs and belly while SIFS smoothes them out. The GVA light
estimate is also quite reasonable. Unlike SIFS, no contour normals, nor tuned shape or lighting
priors are needed for GVA.

with the GVA term and about 1 minute without the GVA term. This is with unoptimized MATLAB
code. We compare to the SIFS algorithm of [3] which is a subset of their algorithm that does not
estimate albedo. We use their publicly released code.

We initialize with an all zeros depth (corresponding to a flat surface) and the light is initialized to
the mean light from the “natural” dataset in [3]. We perform the estimation in multiple scales using
V-sweeps - solving at a coarse scale, upscaling, solving at a finer scale then downsampling the result,
repeating the process 3 times. The same parameter settings were used in all cases3.

We use the same error measures as in [3]. The error for the normals is measured using Median
Angular Error (MAE) in radians. For the light, we take the resulting light coefficients and render
a sphere lit by this light. We look for a DC shift which minimizes the distance between this image
and the rendered ground truth light and shift the two images. Then the final error for the light is the
L2 distance of the two images, normalized by the number of pixels. The error measure for depth Z
used in [3] is quite sensitive to the absolute scaling of the results. We have decided to omit it from
the main paper (even though our performance under this measure is much better than [3]).

A summary of the results can be seen in Figure 2. The GVA term helps significantly in estimation
results. This is especially true for light estimation. On average, our performance is similar to that
of [3]. Our light estimation results are somewhat better, while our geometry estimation results are
slightly poorer. It seems that [3] is somewhat overfit to the models in the MIT dataset. When tested
on the models from [30], it gets poorer results.

Figure 3 shows an example of the results we get, compared to that of SIFS [3], our algorithm with
no GVA term, and the ground truth. As can be seen, the light we estimate is quite close to the
ground truth. The geometry we estimate certainly captures the main structures of the ground truth.
Even though we use no smoothness prior, the resulting mesh is acceptable - though a smoothness
prior, such as the one used [3] would help significantly. The result by [3] misses a lot of the large

3We will make our code publicly available at http://dilipkay.wordpress.com/sfs/
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Figure 4: Another example. Note how we manage to recover some of the dominant structure like
the neck and feet, while SIFS mostly smooths features (albeit resulting in a more pleasing surface).

scale structures of such as the hippo’s belly and feet, but it is certainly smooth and aesthetic. It is
seen that without the GVA term, the resulting light is highly directed and the recovered shape has
snake-like structures which precisely line up with the direction of the light. These are very specific
local minima which satisfy the observed image well, in agreement with the results in [9]. Figure 4
shows some more results on a different model where the general story is similar.

7 Discussion
In this paper, we have presented a shape and illumination from shading algorithm which makes use
of the Generic View Assumption. We have shown how to utilize the GVA within an optimization
framework. We achieve competitive results on shape and illumination estimation without the use of
shape or illumination priors. The central message of our work is that the GVA can be a powerful
regularizing term for the shape from shading problem. While priors for scene parameters can be very
useful, balancing the effect of different priors can be hard and inferred results may be biased towards
a wrong solution. One may ask: is the GVA just another prior? The GVA is a prior assumption,
but a very reasonable one: it merely states that all viewpoints and lighting directions are equally
likely. Nevertheless, there may exist multiple stable solutions and priors may be necessary to enable
choosing between these solutions [16]. A classical example of this is the convex/concave ambiguity
in shape and light.

Future directions for this work are applying the GVA to more vision tasks, utilizing better optimiza-
tion techniques and investigating the coexistence of priors and GVA terms.
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