26 research outputs found
Changes in mass balance of South Cascade Glacier, North Cascades, 1959 to 1994
EXTRACT (SEE PDF FOR FULL ABSTRACT):
Annual, winter, and summer mass balance measurements at South Cascade Glacier in the North Cascade Mountains of Washington State constitute a continuous time series 36 years long, from 1959 to 1994. ... The long-term trends at South Cascade Glacier are decreased winter accumulation and increased summer ablation, neither of which is conducive to glacier growth, so the trend in the Pacific Northwest is clearly away from an ice-age type of climate at the current time. The data also demonstrate that a glaciologically significant long-term change in snow precipitation can occur rapidly, in as short an interval as 1 year, much more rapidly than changes in temperature
Mechanical and hydrologic basis for the rapid motion of a large tidewater glacier: 1. Observations
Measurements of glacier flow velocity and basal water pressure at two sites on Columbia Glacier, Alaska, are combined with meteorological and hydrologic data to provide an observational basis for assessing the role of water storage and basal water pressure in the rapid movement of this large glacier. During the period from July 5 to August 31, 1987, coordinated observations were made of glacier surface motion and of water level in five boreholes drilled to (or in one case near to) the glacier bed at two sites, 5 and 12 km from the terminus. Glacier velocities increased downglacier in this reach from about 4 m d^â1 to about 7 m d^â1. Three types of time variation in velocity and other variables were revealed: (1) Diurnal fluctuation in water input/output, borehole water level, and ice velocity (fluctuation amplitude 5 to 8%); (2) Speed-up events in glacier motion (15â30% speed up), lasting about 3 days, and occurring at times of enhanced input of water, in some cases from rain and in others from ice ablation enhanced by strong, warm winds; (3) âExtra-slowdownâ events, in which, after a speed-up event, the ice velocity decreased in about 3 days to a level consistently lower than that prior to the speed-up event. All of the time variations in velocity were due, directly or indirectly, to variations in water input to the glacier. The role of basal water in causing the observed glacier motions is interpreted by Kamb et al. (this issue)
Three Dimensions of Association Link Migraine Symptoms and Functional Connectivity
Migraine is a heterogeneous disorder with variable symptoms and responsiveness to therapy. Because of previous analytic shortcomings, variance in migraine symptoms has been inconsistently related to brain function. In the current analysis, we used data from two sites (n = 143, male and female humans), and performed canonical correlation analysis, relating restingstate functional connectivity (RSFC) with a broad range of migraine symptoms, ranging from headache characteristics to sleep abnormalities. This identified three dimensions of covariance between symptoms and RSFC. The first dimension related to headache intensity, headache frequency, pain catastrophizing, affect, sleep disturbances, and somatic abnormalities, and was associated with frontoparietal and dorsal attention network connectivity, both of which are major cognitive networks. Additionally, RSFC scores from this dimension, both the baseline value and the change from baseline to postintervention, were associated with responsiveness to mind-body therapy. The second dimension was related to an inverse association between pain and anxiety, and to default mode network connectivity. The final dimension was related to pain catastrophizing, and salience, sensorimotor, and default mode network connectivity. In addition to performing canonical correlation analysis, we evaluated the current clustering of migraine patients into episodic and chronic subtypes, and found no evidence to support this clustering. However, when using RSFC scores from the three significant dimensions, we identified a novel clustering of migraine patients into four biotypes with unique functional connectivity patterns. These findings provide new insight into individual variability in migraine, and could serve as the foundation for novel therapies that take advantage of migraine heterogeneit
Water, ice, and meteorological measurements at South Cascade Glacier, Washington, 2000-01 balance years
Winter snow accumulation and summer snow, firn, and ice melt were measured at South Cascade Glacier, Washington, to determine the winter and net balances for the 2000 and 2001 balance years. In 2000, the winter balance, averaged over the glacier, was 3.32 meters, and the net balance was 0.38 meters. The winter balance was the ninth highest since the record began in 1959. The net balance was greater than 33 of the 41 years since 1959. In 2001, the winter balance was 1.90 meters, and net balance was -1.57 meters. The winter balance was lower than all but 4 years since 1959, and the net balance was more negative than all but 5 other years. Runoff was measured from the glacier basin and an adjacent non-glacierized basin. Air temperature, precipitation, humidity, wind speed and solar radiation were measured nearby. Ice displacements were measured for the 1998-2001 period
Water, ice, meteorological, and speed measurements at South Cascade Glacier, Washington, 1998 balance year /
Includes bibliographical references (p. 8-10).Mode of access: Internet
A Strategy for Monitoring Glaciers
Glaciers are important features in the hydrologic cycle and affect the volume, variability, and water quality of runoff. Assessing and predicting the effect of glaciers on water resources require a monitoring program to provide basic data for this understanding. The monitoring program of the U.S. Geological Survey employs a nested approach whereby an intensively studied glacier is surrounded by less intensively studied glaciers and those monitored solely by remote sensing. Ideally, each glacierized region of the United States would have such a network of glaciers. The intensively studied glacier provides a detailed understanding of the physical processes and their temporal changes that control the mass exchange of the glaciers in that region. The less intensively studied glaciers are used to assess the variability of such processes within the region
Water, ice, and meteorological measurements at South Cascade Glacier, Washington, 1994 balance year /
Shipping list no.: 95-0319-P.Includes bibliographical references (p. 41).Mode of access: Internet
Water, ice, meteorological, and speed measurements at South Cascade Glacier, Washington, 1999 balance year /
Shipping list no.: 2001-0159-P.Includes bibliographical references (p. 7-8).Mode of access: Internet
Water, ice, and meteorological measurements at South Cascade Glacier, Washington, 1996 balance year /
Shipping list no.: 98-0009-P.Includes bibliographical references (p. 9).Mode of access: Internet