110 research outputs found

    Unsaturated deformable porous media flow with phase transition

    Get PDF
    In the present paper, a continuum model is introduced for fluid flow in a deformable porous medium, where the fluid may undergo phase transitions. Typically, such problems arise in modeling liquid-solid phase transformations in groundwater flows. The system of equations is derived here from the conservation principles for mass, momentum, and energy and from the Clausius-Duhem inequality for entropy. It couples the evolution of the displacement in the matrix material, of the capillary pressure, of the absolute temperature, and of the phase fraction. Mathematical results are proved under the additional hypothesis that inertia effects and shear stresses can be neglected. For the resulting highly nonlinear system of two PDEs, one ODE and one ordinary differential inclusion with natural initial and boundary conditions, existence of global in time solutions is proved by means of cut-off techniques and suitable Moser-type estimates

    Explicit and implicit non-convex sweeping processes in the space of absolutely continuous functions

    Get PDF
    We show that sweeping processes with possibly non-convex prox-regular constraints generate a strongly continuous input-output mapping in the space of absolutely continuous functions. Under additional smoothness assumptions on the constraint we prove the local Lipschitz continuity of the input-output mapping. Using the Banach contraction principle, we subsequently prove that also the solution mapping associated with the state-dependent problem is locally Lipschitz continuous

    Explicit and implicit non-convex sweeping processes in the space of absolutely continuous functions

    Get PDF
    We show that sweeping processes with possibly non-convex prox-regular constraints generate a strongly continuous input-output mapping in the space of absolutely continuous functions. Under additional smoothness assumptions on the constraint we prove the local Lipschitz continuity of the input-output mapping. Using the Banach contraction principle, we subsequently prove that also the solution mapping associated with the state-dependent problem is locally Lipschitz continuous.Comment: Changes: p. 2 line 10; p. 5 lines 1 to 6; p. 9 line -1; Acknowledgment section; New References [3] and [23
    corecore