8 research outputs found

    Towards closing the gap between hygroscopic growth and activation for secondary organic aerosol - Part 2: Theoretical approaches

    Get PDF
    We examine the hygroscopic properties of secondary organic aerosol particles generated through the reaction of α-pinene and ozone using a continuous flow reaction chamber. The water activity versus composition relationship is calculated from measurements of growth factors at relative humidities up to 99.6% and from measurements of cloud condensation nuclei activity. The observed relationships are complex, suggesting highly non-ideal behavior for aerosol water contents at relative humidities less than 98%. We present two models that may explain the observed water activity-composition relationship equally well. The first model assumes that the aerosol is a pseudo binary mixture of infinitely water soluble compounds and sparingly soluble compounds that gradually enter the solution as dilution increases. The second model is used to compute the Gibbs free energy of the aerosol-water mixture and shows that the aerosol behaves similarly to what can be expected for single compounds that contain a certain fraction of oxygenated and non-polar functional groups

    Hygroscopicity of particles at two rural, urban influenced sites during Pacific 2001: Comparison with estimates of water uptake from particle composition

    No full text
    Hygroscopicity of particles was measured at Langley (rural) and Eagle Ridge (semi-rural) as part of the Pacific 2001 field campaign. The measured growth factors at the two sites were comparable. However, differences in particle composition as measured by an Aerosol Mass Spectrometer were evident at these two sites. Sulphate mass concentration was found to be similar at the two sites, while higher nitrate and organic mass were observed at Eagle Ridge. Higher growth factors were observed when the air mass was impacted by SO2 sources, while lower growth factors were observed when the air mass was affected by urban emissions. To examine the hygroscopic role of the different particle components, expected growth factors were calculated from the composition data and compared to measured growth factors. Calculations were done using the Zdanovskii, Stokes and Robinson (ZSR) mixing rule. Sulphate fraction played a dominant role in particle hygroscopicity at both sites. Calculated growth factors were within the uncertainty of the measurements, except when the nitrate fraction was high. The results imply that particulate nitrate takes up much less water than ammonium nitrate, indicating that the ZSR mixing rule fails for nitrate. Small variations of organic growth factors with source regions suggest that secondary organic matter is more hygroscopic than primary organic matter
    corecore