7,319 research outputs found

    Stokes-vector evolution in a weakly anisotropic inhomogeneous medium

    Full text link
    Equation for evolution of the four-component Stokes vector in weakly anisotropic and smoothly inhomogeneous media is derived on the basis of quasi-isotropic approximation of the geometrical optics method, which provides consequent asymptotic solution of Maxwell equations. Our equation generalizes previous results, obtained for the normal propagation of electromagnetic waves in stratified media. It is valid for curvilinear rays with torsion and is capable to describe normal modes conversion in the inhomogeneous media. Remarkably, evolution of the Stokes vector is described by the Bargmann-Michel-Telegdi equation for relativistic spin precession, whereas the equation for the three-component Stokes vector resembles the Landau-Lifshitz equation for spin precession in ferromegnetic systems. General theory is applied for analysis of polarization evolution in a magnetized plasma. We also emphasize fundamental features of the non-Abelian polarization evolution in anisotropic inhomogeneous media and illustrate them by simple examples.Comment: 16 pages, 3 figures, to appear in J. Opt. Soc. Am.

    Quasi-isotropic approximation of geometric optics

    Get PDF
    Modified geometric optics method for solution of Maxwell equation

    Formation of Globular Clusters in Hierarchical Cosmology: ART and Science

    Full text link
    We test the hypothesis that globular clusters form in supergiant molecular clouds within high-redshift galaxies. Numerical simulations demonstrate that such large, dense, and cold gas clouds assemble naturally in current hierarchical models of galaxy formation. These clouds are enriched with heavy elements from earlier stars and could produce star clusters in a similar way to nearby molecular clouds. The masses and sizes of the model clusters are in excellent agreement with the observations of young massive clusters. Do these model clusters evolve into globular clusters that we see in our and external galaxies? In order to study their dynamical evolution, we calculate the orbits of model clusters using the outputs of the cosmological simulation of a Milky Way-sized galaxy. We find that at present the orbits are isotropic in the inner 50 kpc of the Galaxy and preferentially radial at larger distances. All clusters located outside 10 kpc from the center formed in the now-disrupted satellite galaxies. The spatial distribution of model clusters is spheroidal, with a power-law density profile consistent with observations. The combination of two-body scattering, tidal shocks, and stellar evolution results in the evolution of the cluster mass function from an initial power law to the observed log-normal distribution. However, not all initial conditions and not all evolution scenarios are consistent with the observed mass function.Comment: 8 pages, invited review for conference "Globular Clusters, Guide to Galaxies", 6-10 March 2006, University of Concepcion, Chile, ed. T. Richtler, et a

    On the interplay between star formation and feedback in galaxy formation simulations

    Full text link
    We investigate the star formation-feedback cycle in cosmological galaxy formation simulations, focusing on progenitors of Milky Way (MW)-sized galaxies. We find that in order to reproduce key properties of the MW progenitors, such as semi-empirically derived star formation histories and the shape of rotation curves, our implementation of star formation and stellar feedback requires 1) a combination of local early momentum feedback via radiation pressure and stellar winds and subsequent efficient supernovae feedback, and 2) efficacy of feedback that results in self-regulation of the global star formation rate on kiloparsec scales. We show that such feedback-driven self-regulation is achieved globally for a local star formation efficiency per free fall time of ϵff10%\epsilon_{\rm ff}\approx 10\%. Although this value is larger that the ϵff1%\epsilon_{\rm ff}\sim 1\% value usually inferred from the Kennicutt-Schmidt (KS) relation, we show that it is consistent with direct observational estimates of ϵff\epsilon_{\rm ff} in molecular clouds. Moreover, we show that simulations with local efficiency of ϵff10%\epsilon_{\rm ff}\approx 10\% reproduce the global observed KS relation. Such simulations also reproduce the cosmic star formation history of the Milky Way sized galaxies and satisfy a number of other observational constraints. Conversely, we find that simulations that a priori assume an inefficient mode of star formation, instead of achieving it via stellar feedback regulation, fail to produce sufficiently vigorous outflows and do not reproduce observations. This illustrates the importance of understanding the complex interplay between star formation and feedback and the detailed processes that contribute to the feedback-regulated formation of galaxies.Comment: 20 pages, 13 figures, accepted for publication in Ap
    corecore