1,907 research outputs found

    Stochastic electron heating in the laser and quasi-static electric and magnetic fields

    Full text link
    The dynamics of relativistic electrons in the intense laser radiation and quasi-static electromagnetic fields both along and across to the laser propagating direction are studied in the 3/2 dimensional Hamiltonian framework. It is shown that the unperturbed oscillations of the relativistic electron in these electric fields could exhibit a long tail of harmonics which makes an onset of stochastic electron motion be a primary candidate for electron heating. The Poincar\'e mappings describing the electron motions in the laser and electric fields only are derived from which the criterions for instability are obtained. It follows that for both transverse and longitudinal electric fields, there exist upper limits of the stochastic electron energy depending on the laser intensity and electric field strength. Specifically, these maximum stochastic energies are enhanced by a strong laser intensity but weak electric field. Such stochastic heating would be reduced by the superluminal phase velocity in both cases. The impacts of the magnetic fields on the electron dynamics are different for these two cases and discussed qualitatively. These analytic results are confirmed by the numerical simulations of solving the 3/2D Hamiltonian equations directly

    Meta- (out-of-context) learning in neural networks

    Full text link
    Brown et al. (2020) famously introduced the phenomenon of in-context learning in large language models (LLMs). We establish the existence of a phenomenon we call meta-out-of-context learning (meta-OCL) via carefully designed synthetic experiments with LLMs. Our results suggest that meta-OCL leads LLMs to more readily "internalize" the semantic content of text that is, or appears to be, broadly useful (such as true statements, or text from authoritative sources) and use it in appropriate circumstances. We further demonstrate meta-OCL in a synthetic computer vision setting, and propose two hypotheses for the emergence of meta-OCL: one relying on the way models store knowledge in their parameters, and another suggesting that the implicit gradient alignment bias of gradient-descent-based optimizers may be responsible. Finally, we reflect on what our results might imply about capabilities of future AI systems, and discuss potential risks. Our code can be found at https://github.com/krasheninnikov/internalization

    Two dimensional effects in plasma radiation fronts and radiation front jumps in tokamak divertor plasmas

    Get PDF

    Axisymmetric equilibria of a gravitating plasma with incompressible flows

    Get PDF
    It is found that the ideal magnetohydrodynamic equilibrium of an axisymmetric gravitating magnetically confined plasma with incompressible flows is governed by a second-order elliptic differential equation for the poloidal magnetic flux function containing five flux functions coupled with a Poisson equation for the gravitation potential, and an algebraic relation for the pressure. This set of equations is amenable to analytic solutions. As an application, the magnetic-dipole static axisymmetric equilibria with vanishing poloidal plasma currents derived recently by Krasheninnikov, Catto, and Hazeltine [Phys. Rev. Lett. {\bf 82}, 2689 (1999)] are extended to plasmas with finite poloidal currents, subject to gravitating forces from a massive body (a star or black hole) and inertial forces due to incompressible sheared flows. Explicit solutions are obtained in two regimes: (a) in the low-energy regime β0≈γ0≈δ0≈ϵ0≪1\beta_0\approx \gamma_0\approx \delta_0 \approx\epsilon_0\ll 1, where β0\beta_0, γ0\gamma_0, δ0\delta_0, and ϵ0\epsilon_0 are related to the thermal, poloidal-current, flow and gravitating energies normalized to the poloidal-magnetic-field energy, respectively, and (b) in the high-energy regime β0≈γ0≈δ0≈ϵ0≫1\beta_0\approx \gamma_0\approx \delta_0 \approx\epsilon_0\gg 1. It turns out that in the high-energy regime all four forces, pressure-gradient, toroidal-magnetic-field, inertial, and gravitating contribute equally to the formation of magnetic surfaces very extended and localized about the symmetry plane such that the resulting equilibria resemble the accretion disks in astrophysics.Comment: 12 pages, latex, to be published in Geophys. Astrophys. Fluid Dynamic
    • …
    corecore