864 research outputs found

    Computer-assisted ex vivo, normothermic small bowel perfusion

    Get PDF
    Background: In the present study, a technique for computer-assisted, normothermic, oxygenated, ex vivo, recirculating small bowel perfusion was established as a tool to investigate organ pretreatment protocols and ischemia/reperfusion phenomena. A prerequisite for the desired setup was an organ chamber for ex vivo perfusion and the use of syngeneic whole blood as perfusate. Methods: The entire small bowel was harvested from Lewis rats and perfused in an organ chamber ex vivo for at least 2 h. The temperature was kept at 37 degrees C in a water bath. Three experimental groups were explored, characterized by different perfusion solutions. The basic perfusate consisted of syngeneic whole blood diluted with either NaCl, Krebs' solution or Krebs' solution and norepinephrine to a hematocrit of 30%. In addition, in each group l-glutamine was administered intraluminally. The desired perfusion pressure was 100 mm Hg which was kept constant with a computer-assisted data acquisition software, which measured an-line pressure, oxygenation, flow, temperature and pH and adjusted the pressure by changing the flow via a peristaltic pump. The viability of the preparation was tested by measuring oxygen consumption and maltose absorption, which requires intact enzymes of the mucosal brush border to break down maltose into glucose. Results: Organ perfusion in group 1 (dilution with NaCl) revealed problems such as hypersecretion into the bowel lumen, low vascular resistance and no maltose uptake. In contrast a viable organ could be demonstrated using Krebs' solution as dilution solution. The addition of norepinephrine led to an improved perfusion over the entire perfusion period. Maltose absorption was comparable to tests conducted with native small bower. Oxygen consumption was stable during the 2-hour perfusion period. Conclusions: The ex vivo perfusion system established enables small bowel perfusion for at least 2 h. The viability of the graft could be demonstrated. The perfusion time achieved is sufficient to study leukocyte/lymphocyte interaction with the endothelium of the graft vessels. In addition, a viable small bowel, after 2 h of ex vivo perfusion, facilitates testing of pretreatment protocols for the reduction of the immunogenicity of small bowel allografts. Copyright (C) 2000 S. Karger AG, Basel

    The significance of motivation in student-centred learning : a reflective case study

    Get PDF
    The theoretical underpinnings of student-centred learning suggest motivation to be an integral component. However, lack of clarification of what is involved in motivation in education often results in unchallenged assumptions that fail to recognise that what motivates some students may alienate others. This case study, using socio-cognitive motivational theory to analyse previously collected data, derives three fuzzy propositions which, collectively, suggest that motivation interacts with the whole cycle of episodes in the teachinglearning process. It argues that the development of the higherlevel cognitive competencies that are implied by the term, student-centred learning, must integrate motivational constructs such as goal orientation, volition, interest and attributions into pedagogical practices

    Academic achievement : the role of praise in motivating students

    Get PDF
    The motivation of students is an important issue in higher education, particularly in the context of the increasing diversity of student populations. A social-cognitive perspective assumes motivation to be dynamic, context-sensitive and changeable, thereby rendering it to be a much more differentiated construct than previously understood. This complexity may be perplexing to tutors who are keen to develop applications to improve academic achievement. One application that is within the control of the tutor, at least to some extent, is the use of praise. Using psychological literature the article argues that in motivating students, the tutor is not well served by relying on simplistic and common sense understandings of the construct of praise and that effective applications of praise are mediated by students' goal orientations, which of themselves may be either additive or interactive composites of different objectives and different contexts

    Range and extinction dynamics of the steppe bison in Siberia : A pattern-oriented modelling approach

    Get PDF
    Aim To determine the ecological processes and drivers of range collapse, population decline and eventual extinction of the steppe bison in Eurasia. Location Siberia. Time period Pleistocene and Holocene. Major taxa studied Steppe bison (Bison priscus). Methods We configured 110,000 spatially explicit population models (SEPMs) of climate-human-steppe bison interactions in Siberia, which we ran at generational time steps from 50,000 years before present. We used pattern-oriented modelling (POM) and fossil-based inferences of distribution and demographic change of steppe bison to identify which SEPMs adequately simulated important interactions between ecological processes and biological threats. These "best models" were then used to disentangle the mechanisms that were integral in the population decline and later extinction of the steppe bison in its last stronghold in Eurasia. Results Our continuous reconstructions of the range and extinction dynamics of steppe bison were able to reconcile inferences of spatio-temporal occurrence and the timing and location of extinction in Siberia based on hundreds of radiocarbon-dated steppe bison fossils. We showed that simulating the ecological pathway to extinction for steppe bison in Siberia in the early Holocene required very specific ecological niche constraints, demographic processes and a constrained synergy of climate and human hunting dynamics during the Pleistocene-Holocene transition. Main conclusions Ecological processes and drivers that caused ancient population declines of species can be reconstructed at high spatio-temporal resolutions using SEPMs and POM. Using this approach, we found that climatic change and hunting by humans are likely to have interacted with key ecological processes to cause the extinction of the steppe bison in its last refuge in Eurasia.Peer reviewe

    First Model-Independent Measurement of the Spin Triplet pΛp\Lambda Scattering Length from Final State Interaction in the pppK+Λ\vec{p}p \rightarrow pK^{+}\Lambda Reaction

    Full text link
    The pppK+Λ\vec{p}p \rightarrow pK^{+}\Lambda reaction has been measured with the COSY-TOF detector at a beam momentum of 2.7GeV/c2.7\,\mathrm{GeV}/c. The polarized proton beam enables the measurement of the beam analyzing power by the asymmetry of the produced kaon (ANKA_N^{K}). This observable allows the pΛp\Lambda spin triplet scattering length to be extracted for the first time model independently from the final-state interaction in the reaction. The obtained value is at=(2.551.39+0.72stat.±0.6syst.±0.3theo.)fma_{t} = (-2.55 ^{+0.72}_{-1.39} {}_{\textrm{stat.}} \pm 0.6_{\textrm{syst.}} \pm 0.3_{\textrm{theo.}})\mathrm{fm}. This value is compatible with theoretical predictions and results from model-dependent analyses.Comment: Revised version as accepted for publication in PR

    Neuromorphometric characterization with shape functionals

    Full text link
    This work presents a procedure to extract morphological information from neuronal cells based on the variation of shape functionals as the cell geometry undergoes a dilation through a wide interval of spatial scales. The targeted shapes are alpha and beta cat retinal ganglion cells, which are characterized by different ranges of dendritic field diameter. Image functionals are expected to act as descriptors of the shape, gathering relevant geometric and topological features of the complex cell form. We present a comparative study of classification performance of additive shape descriptors, namely, Minkowski functionals, and the nonadditive multiscale fractal. We found that the proposed measures perform efficiently the task of identifying the two main classes alpha and beta based solely on scale invariant information, while also providing intraclass morphological assessment

    Interferon priming is essential for human CD34+ cell-derived plasmacytoid dendritic cell maturation and function

    Get PDF
    Plasmacytoid dendritic cells (pDC) are essential for immune competence. Here we show that pDC precursor differentiated from human CD34+ hematopoietic stem and progenitor cells (HSPC) has low surface expression of pDC markers, and has limited induction of type I interferon (IFN) and IL-6 upon TLR7 and TLR9 agonists treatment; by contrast, cGAS or RIG-I agonists-mediated activation is not altered. Importantly, after priming with type I and II IFN, these precursor pDCs attain a phenotype and functional activity similar to that of peripheral blood-derived pDCs. Data from CRISPR/Cas9-mediated genome editing of HSPCs further show that HSPC-pDCs with genetic modifications can be obtained, and that expression of the IFN-α receptor is essential for the optimal function, but dispensable for the differentiation, of HSPC-pDC percursor. Our results thus demonstrate the biological effects of IFNs for regulating pDC function, and provide the means of generating of gene-modified human pDCs

    Novel cis-regulatory function in ICR-mediated imprinted repression of H19

    Get PDF
    Expression of coregulated imprinted genes, H19 and Igf2, is monoallelic and parent-of-origin-dependent. Like most imprinted genes, H19 and Igf2 are regulated by a differentially methylated imprinting control region (ICR). CTCF binding sites and DNA methylation at the ICR have previously been identified as key cis-acting elements required for proper H19/Igf2 imprinting. Here, we use mouse models to elucidate further the mechanism of ICR-mediated gene regulation. We specifically address the question of whether sequences outside of CTCF sites at the ICR are required for paternal H19 repression. To this end, we generated two types of mutant ICRs in the mouse: (i) deletion of intervening sequence between CTCF sites (H19ICR-IVS), which changes size and CpG content at the ICR; and (ii) CpG depletion outside of CTCF sites (H19ICR-8nrCG), which only changes CpG content at the ICR. Individually, both mutant alleles (H19ICR-IVS and H19ICR-8nrCG) show loss of imprinted repression of paternal H19. Interestingly, this loss of repression does not coincide with a detectable change in methylation at the H19 ICR or promoter. Thus, neither intact CTCF sites nor hypermethylation at the ICR is sufficient for maintaining the fully repressed state of the paternal H19 allele. Our findings demonstrate, for the first time in vivo, that sequence outside of CTCF sites at the ICR is required in cis for ICR-mediated imprinted repression at the H19/Igf2 locus. In addition, these results strongly implicate a novel role of ICR size and CpG density in paternal H19 repression

    Identification of potential HIV restriction factors by combining evolutionary genomic signatures with functional analyses.

    Get PDF
    BACKGROUND: Known antiretroviral restriction factors are encoded by genes that are under positive selection pressure, induced during HIV-1 infection, up-regulated by interferons, and/or interact with viral proteins. To identify potential novel restriction factors, we performed genome-wide scans for human genes sharing molecular and evolutionary signatures of known restriction factors and tested the anti-HIV-1 activity of the most promising candidates. RESULTS: Our analyses identified 30 human genes that share characteristics of known restriction factors. Functional analyses of 27 of these candidates showed that over-expression of a strikingly high proportion of them significantly inhibited HIV-1 without causing cytotoxic effects. Five factors (APOL1, APOL6, CD164, TNFRSF10A, TNFRSF10D) suppressed infectious HIV-1 production in transfected 293T cells by >90% and six additional candidates (FCGR3A, CD3E, OAS1, GBP5, SPN, IFI16) achieved this when the virus was lacking intact accessory vpr, vpu and nef genes. Unexpectedly, over-expression of two factors (IL1A, SP110) significantly increased infectious HIV-1 production. Mechanistic studies suggest that the newly identified potential restriction factors act at different steps of the viral replication cycle, including proviral transcription and production of viral proteins. Finally, we confirmed that mRNA expression of most of these candidate restriction factors in primary CD4+ T cells is significantly increased by type I interferons. CONCLUSIONS: A limited number of human genes share multiple characteristics of genes encoding for known restriction factors. Most of them display anti-retroviral activity in transient transfection assays and are expressed in primary CD4+ T cells
    corecore