31 research outputs found

    Novel Photon-Counting Detectors for Free-Space Communication

    Get PDF
    We present performance data for novel photon-counting detectors for free space optical communication. NASA GSFC is testing the performance of two types of novel photon-counting detectors 1) a 2x8 mercury cadmium telluride (HgCdTe) avalanche array made by DRS Inc., and a 2) a commercial 2880-element silicon avalanche photodiode (APD) array. We present and compare dark count, photon-detection efficiency, wavelength response and communication performance data for these detectors. We successfully measured real-time communication performance using both the 2 detected-photon threshold and AND-gate coincidence methods. Use of these methods allows mitigation of dark count, after-pulsing and background noise effects. The HgCdTe APD array routinely demonstrated photon detection efficiencies of greater than 50% across 5 arrays, with one array reaching a maximum PDE of 70%. We performed high-resolution pixel-surface spot scans and measured the junction diameters of its diodes. We found that decreasing the junction diameter from 31 micrometers to 25 micrometers doubled the e- APD gain from 470 for an array produced in the year 2010 to a gain of 1100 on an array delivered to NASA GSFC recently. The mean single-photon SNR was over 12 and the excess noise factors measurements were 1.2-1.3. The commercial silicon APD array exhibited a fast output with rise times of 300 ps and pulse widths of 600 ps. On-chip individually filtered signals from the entire array were multiplexed onto a single fast output

    Redeployable Sensor Probe for In-Situ Lunar Resource Mapping from Small Landers

    Get PDF
    The use of in-situ resources in lunar regolith for production of propellant, life support, and construction (e.g. polar water ice, hydrogen, helium-3, and regolith minerals) will enable sustainable robotic and human space exploration and pave the way for commercialization of lunar exploration. Currently, the search for and characterization of resources on the Moon uses orbital datasets and local geological and geophysical surveys to map and characterize potential deposits. To develop efficient ISRU systems, it is essential to find, characterize, and map lunar resources in-situ, at local scales, using deployable, analytical payloads. We have developed a 3 kg, TRL4 scientific payload, MoonSHOT (Moon Subsurface Hydrogen Optical Tool), to characterize and map lunar resources from a small lander or rover

    Single ion implantation for single donor devices using Geiger mode detectors

    Full text link
    Electronic devices that are designed to use the properties of single atoms such as donors or defects have become a reality with recent demonstrations of donor spectroscopy, single photon emission sources, and magnetic imaging using defect centers in diamond. Improving single ion detector sensitivity is linked to improving control over the straggle of the ion as well as providing more flexibility in lay-out integration with the active region of the single donor device construction zone by allowing ion sensing at potentially greater distances. Using a remotely located passively gated single ion Geiger mode avalanche diode (SIGMA) detector we have demonstrated 100% detection efficiency at a distance of >75 um from the center of the collecting junction. This detection efficiency is achieved with sensitivity to ~600 or fewer electron-hole pairs produced by the implanted ion. Ion detectors with this sensitivity and integrated with a thin dielectric, for example 5 nm gate oxide, using low energy Sb implantation would have an end of range straggle of <2.5 nm. Significant reduction in false count probability is achieved by modifying the ion beam set-up to allow for cryogenic operation of the SIGMA detector. Using a detection window of 230 ns at 1 Hz, the probability of a false count was measured as 1E-1 and 1E-4 for operation temperatures of 300K and 77K, respectively. Low temperature operation and reduced false, dark, counts are critical to achieving high confidence in single ion arrival. For the device performance in this work, the confidence is calculated as a probability of >98% for counting one and only one ion for a false count probability of 1E-4 at an average ion number per gated window of 0.015.Comment: 10 pages, 5 figures, submitted to Nanotechnolog

    HgCdTe Avalanche Photodiode Array Detectors with Single Photon Sensitivity and Integrated Detector Cooler Assemblies for Space Lidar Applications

    Get PDF
    A HgCdTe avalanche photodiode (APD) focal plane array assembly with linear mode photon-counting capability has been developed for space lidar applications. An integrated detector cooler assembly (IDCA) has been built using a miniature Stirling cooler. A microlens array has been included to improve the fill factor. The HgCdTe APD has a spectral response from 0.9- to 4.3-m wavelengths, a photon detection efficiency as high as 70%, and a dark count rate of <250 kHz at 110 K. The mass of the IDCA is 0.8 kg and the total electrical power consumption is about 7 W. The HgCdTe APD arrays have been characterized at NASA Goddard Space Flight Center. A series of environmental tests have been conducted for the IDCAs, including vibration, thermal cycling, and thermal vacuum tests. A description of the device and the test results at NASA are given in this paper

    Femtosecond Photon-Counting Receiver

    Get PDF
    An optical correlation receiver is described that provides ultra-precise distance and/or time-pulse-width measurements even for weak (single photons) and short (femtosecond) optical signals. A new type of optical correlation receiver uses a fourth-order (intensity) interferometer to provide micron distance measurements even for weak (single photons) and short (femtosecond) optical signals. The optical correlator uses a low-noise-integrating detector that can resolve photon number. The correlation (range as a function of path delay) is calculated from the variance of the photon number of the difference of the optical signals on the two detectors. Our preliminary proof-of principle data (using a short-pulse diode laser transmitter) demonstrates tens of microns precision

    Direct-detection Free-space Laser Transceiver Test-bed

    Get PDF
    NASA Goddard Space Flight Center is developing a direct-detection free-space laser communications transceiver test bed. The laser transmitter is a master-oscillator power amplifier (MOPA) configuration using a 1060 nm wavelength laser-diode with a two-stage multi-watt Ytterbium fiber amplifier. Dual Mach-Zehnder electro-optic modulators provide an extinction ratio greater than 40 dB. The MOPA design delivered 10-W average power with low-duty-cycle PPM waveforms and achieved 1.7 kW peak power. We use pulse-position modulation format with a pseudo-noise code header to assist clock recovery and frame boundary identification. We are examining the use of low-density-parity-check (LDPC) codes for forward error correction. Our receiver uses an InGaAsP 1 mm diameter photocathode hybrid photomultiplier tube (HPMT) cooled with a thermo-electric cooler. The HPMT has 25% single-photon detection efficiency at 1064 nm wavelength with a dark count rate of 60,000/s at -22 degrees Celsius and a single-photon impulse response of 0.9 ns. We report on progress toward demonstrating a combined laser communications and ranging field experiment

    A Global Upper Atmosphere Observatory Using of Lidar on the International Space Station

    Get PDF
    A concept for hosting a lidar facility for the upper atmosphere on the International Space Station (ISS) is presented and discussed. The concept is based on utilizing an existing Large Space Optics mirror having a 2.37-m aperture as the primary mirror in its receiver. This large aperture provides for hosting several transmitter systems to retrieve density, temperature, and wind measurements for several upper atmospheric species. Thus the concept provides for measurements over a wide altitude range (80-600 km), at various time and spatial resolutions, and hosting on the ISS provides nearly global coverage. The baseline concept includes transmitters and receivers for atomic oxygen (80-500 km), metastable helium (400-600 km), and sodium (80-110 km). The facility is conceived as being flexible such that other transmitter/receiver systems could be added to allow the possibility of other species to be studied, such as iron. The presentation discusses the transformative science that would be gained by such an observatory by combining the nearly global coverage afforded by the ISS orbit with the extension of powerful lidar techniques to high altitudes. The challenges in realizing such an observatory are discussed, as are current plans and partnerships to meet those challenges. The presentation also reports on the development status of several components, primarily various independent transmitter/receiver systems, that are under consideration for the baseline observatory. Several institutions are performing these developments

    spine

    No full text
    image structures for content-based retrieval of digitize

    spine

    No full text
    image structures for content-based retrieval of digitize
    corecore