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Correlation Function My
Definition 13
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R(t)= Qf (t)g(¢- t)dt
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Correlation Function
Optical Implementation

Intensity autocorrelator
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Correlation Function My
5 Optical nonlinear crystal 1}

R(t)= Qf (t)g(t- t)dt

Real-time product originates from:
2"d harmonic crystal: y @

P™ =c®f(0)g(t- 1)

But to implement:
We step the delay (t) and calculate at each step.

NOT “real-time”.
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41 order Interferometer

11989

equal mten51ty in each arm the frmge VlSlblhty is given by
lv(r)| and the position of the fringe pattern is determined by
the phase of y(7), where v(7) is the normalized second-order
autocorrelation function of the incoming wave field. If
Vo(t) is the complex analytic signal representing the inci-
dent stationary, polarized wave, then!

(1) = (V@) V(e + D)V, @), 1

Because y(r) is of second order in the field amplitude, we
refer to this procedure as second-order interferometry and
to the corresponding coherence time 7. as the second-order
coherence time.

By varying the path difference ¢r and measuring the

fringe visibility as a function of r, one can readily determme
w Pummn thawanma aflasadl Alihacbat g

TR>>J

0

By measuring the photoelectnc correlatxon as a function
of 7, we can determine the range of A(r) and therefore the
correlation time. In general, the ranges of A(r) and of |y(r)|
may be quite different, however, although in the special case
of polarized light with thermal statistics A(r) and y(r) are
related by3

@) = Iy (3)

But for other fields, such as laser beams, there may be little
connection between A(r) and ly(r)l. One weakness of the
intensity-correlation technique is that it is limited by the
resolving time 7z of the detectors and the electronics to
fourth-order correlation times 7, that are much longer than
7 (typically of the order of 10~9 sec), and it becomes useless
when 7, K 5.

A(7)dr. (16)

(Using coincidence detection) i\
1993

scheme for measmng both the coherence time and
the pulse duration time of the input optical field, with
virtually no limit on time resolution. Measurement
is made at photon-counting intensity levels and is
applicable to a wide range of wavelengths.

We have tested our scheme by applying it to the
measurement of the output pulses of a cw mode-
locked dye laser. The results are in good agreement
with values obtained by the conventional second-
harmonic (SH) autocorrelation technique.

The scheme is illustrated in Fig. 1. Let us assume
that the incident optical field is a pulse train of
polarized light and that each pulse can be expressed

Lvr dhin mnmaalaee &2
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Countun(s7) =K [ “a¢ [ " anm 0B, +
t -Tr/2
X Es(t + 7)E1(t)ag -
K is an appropriate proportional constant, T it

detector response time, and ()4, denotes ense:
averages with respect to A() and ¢(¢).
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Hence for large 7p Eq. (12) simplifies to

RT

= 2RT(R* + TH(I )2 74 1 — T oo BmIE s (17)

where voo(7) = Too(r)/{Iy) is the normalized second-order
sorrelation function of the incident optieal field. Although,
‘or simplicity, we have treated a polarized field, a similar
:quation can be derived even for unpolarized light when
zertain symmetry conditions are satisfied.

Since v¢o(0) = 1 by definition, it follows that a measure-
nent of the correlation I'ys as a function of the varlable time

Jadmer 8 caname 22220 M T 2 L] . e n
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st optical pulses with
nterference
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, 1983 / Vol. 18, No. 11 / OPTICS LETTERS !

‘e show a plot of this function in Fig. 2, Thern
crease in the coincidence count rate at 87 ~ 0 tl
ists of two components, corresponding to the fi
second Gaussian terms of Eq. (9), which in 1
e back to the two terms in Eq. (7). The narr
ponent corresponding to the first term is caw
econd-order interference, which occurs only wi
is smaller than the pulse field coherence time



Two photon interference for short pulse |
(1987) A

rcsolvmg time of lhc pholodcleclor to mtervals of order
100 ps or longer.®

We wish to report an experiment in which the time in-
terval between signal and idler photons, and by implica-
tion the length of a subpicosecond photon wave packet,
produced in parametric down-conversion was measured,
The technique is based on the interference of two two-
photon probabilily amplitudes in two-photon detection,
and is easily able to measure a time interval of 50 fis,
with an accuracy that could be 1 fs or better.

An outline of the experiment is shown in Fig, 1, A
coherent beam of light of frequency mg from an argon-
ion laser oscillating on the 351.1-nm line falls on an 8-

5x 1012 Hz corruspondmg to a cohcrencc time for each
photon of order 100 fs. Needless to say, the two-photon
probability amplitudes at the detectors D1,D2 are ex-
pecled to interfere only if they overlap to this accuracy
or better. We start by examining how this interference
arises,

Let us label the field modes on the input sides of the
beam splitter by 01,02 and on the output sides by 1,2
and suppose first that the light is monochromatic. If we
take the state at the input resulting from one degenerate
down-conversion to be the two-photon Fock state
| 101, T2, then one can show from general arguments’
that the state on the ocutput side of the beam splitter is

cm-long nonlinear crystal of potassium dihydrogen phos-
phate, where some of the incident photons split into two
Position of beam splitter {y.mj}

FIG, 2. The measured number of coincidences as a function
of beam-splitter displacement ¢ 61, superimposed on the solid
theotetical curve derived from Eq. (11} with R/T=0.95,
Aw=3x10'"" rad s~!. For the dashed curve the [actor
2RT/R?+ T?) in Eq. (11) was multiplied by 0.9. The verti-
cal error bars correspond to one standard deviation, whercas
horizontal error bars are based on estimates of the measurc-
ment accuracy.

“Unlike second- order interference, this method does not
require that path differences be kept constant to within a
fraction of a wavelength. The method is applicable to
other situations in which pairs of single photons are
produced, but be- comes less e%cient for more intense
pulses of light, be- cause the "visibility" of the
interference is then reduced and cannot exceed 50% at
high intensities. In principle, the resolution could be
better than 1 pm in length or 1 fs in time.”

time spread of the photoelectric pulses and the slewing of
the discriminator pulses, a range of time intervals cen-
tered on zero delay was obtained with a spread of several
nanoseconds. For the purpose ol the measurement, pulse
pairs received within a 7.5-ns interval were treated as
“coincident.” Pulse pairs received within an interval of
35 to 80 ns were regarded as accidentals, and when
scaled by the factor 7.5/45 provided a mcasure of the
number of accidental coincidences thal occur within any
7.5-ns interval.

The rcaulls of 1he experlment are presented in Flg 2
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Absolute measurement of a long, arbitrary distance to less
than an optical fringe

Jun Ye
JILA, National Institute of Standards and Technology, and Univeristy of Colorado, Boulder, Colorado 80309-0440
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Heterodyne correlator 1t
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Real-time product originates from: square law detector

[f(t)+g(t- 1)) = f(Delt- t)

But to implement:
We step the delay (t) and calculate at each step.

NOT “real-time”.
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IDEA! Ay
Use Statistics “DEFINITION” [
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Var(X)=E[(X - ELX])']=E[X°]- (E[X])

‘IDEA: Use Intensity interferometer (a.k.a. fourth order) ‘

Var(1,(1)- 1,) = E[(L(0)- L,)'T- (ELL(O)- L0

Calculated product originates from: Variance DEFINITION
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MathCad “intensity’”’ simulation j;j
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Pulse train — I(t) - with Poisson intensity distribution

-0.5[Var(L,(2)- L(£))-' E(L(0)- E(I, ()
0,
20(()); - L‘_AAV_\_’:

m-h
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Sensl Silicon APD Array :’;fg
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Detector: Sensl MicroFM-SMA-10020
Lot # 131218

leaadl LILLE

A

Active Area: 1mm X 1mm
# of Cells: 1144
Fill Factor: 48%

Biased at -32V unless noted otherwise
NOTE: New “Red” version available

with higher near-IR QE. NOT used in
these tests.
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Detected photon number discrimination 4
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Proof-of-concept experiment Tj
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Intensity Interferometer Correlator _+
o (Macroscopic Hong-Ou-Mandel) 13
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REFERENCE:

Iskhakov, T. Sh; Spasibko, K. Yu; Chekhova, M. V.; et al.
"Macroscopic Hong-Ou-Mandel interference,"
New Journal of Physics Vol. 15, 093036 (2013)

Var<(]]\\;+.>(t)) :%<N+>exp_' 2In2 th‘zz_

<N+>:N1+N2 1 = 1 + 1 T = pulse width
Dt? 2 T2 r.=coherence time

Cc
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Experimental ﬂ
RESULTS [
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SUMMARY ﬂ*!
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I. Reviewed methods for forming correlator product
1) Nonlinear crystal
2) Heterodyne — 2" order interferometer
3) Photon number statistics (variance of intensity difference) - 41 order interferometer
I1. Experimental demonstration of intensity inteferometer correlator for laser ranging
1) Optical delay interferometer
2) Moving mirror => to “wash out” second order interference effects
3) Commercial (Sensl Inc.) Geiger-mode silicon APD array (photon number) detector).
4) Demonstrated tens of micron level accuracy of Photon Counting Ranging
I11. Future

Femtosecond-pulse Carbon-nanotube mode-locked frequency-doubled fiber laser source
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